#include #include #include #include #define VULKAN_HPP_DISPATCH_LOADER_DYNAMIC 1 #define VK_ENABLE_BETA_EXTENSIONS #define VULKAN_HPP_NO_CONSTRUCTORS #include VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE #include "util/types.h" #define VKFW_NO_STD_FUNCTION_CALLBACKS #include "vkfw.hpp" constexpr i32 WIDTH = 800; constexpr i32 HEIGHT = 600; constexpr i32 MAX_FRAMES_IN_FLIGHT = 2; constexpr std::array validationLayers = { "VK_LAYER_KHRONOS_validation" }; #ifdef __APPLE__ constexpr std::array deviceExtensions = { vk::KHRSwapchainExtensionName, vk::KHRPortabilitySubsetExtensionName }; #else constexpr std::array deviceExtensions = { vk::KHRSwapchainExtensionName }; #endif #ifdef NDEBUG constexpr bool enableValidationLayers = false; #else constexpr bool enableValidationLayers = true; #endif class VulkanApp { public: fn run() -> void { initWindow(); initVulkan(); mainLoop(); } private: vkfw::UniqueInstance mGLFWInstance; vkfw::UniqueWindow mWindow; vk::UniqueInstance mInstance; vk::UniqueDebugUtilsMessengerEXT mDebugMessenger; vk::UniqueSurfaceKHR mSurface; vk::PhysicalDevice mPhysicalDevice; vk::UniqueDevice mDevice; vk::Queue mGraphicsQueue; vk::Queue mPresentQueue; vk::UniqueSwapchainKHR mSwapChain; std::vector mSwapChainImages; vk::Format mSwapChainImageFormat; vk::Extent2D mSwapChainExtent; std::vector mSwapChainImageViews; std::vector mSwapChainFramebuffers; vk::UniqueRenderPass mRenderPass; vk::UniquePipelineLayout mPipelineLayout; vk::UniquePipeline mGraphicsPipeline; vk::UniqueCommandPool mCommandPool; std::vector mCommandBuffers; std::vector mImageAvailableSemaphores; std::vector mRenderFinishedSemaphores; std::vector mInFlightFences; bool mFramebufferResized = false; u32 mCurrentFrame = 0; struct QueueFamilyIndices { std::optional graphics_family; std::optional present_family; fn isComplete() -> bool { return graphics_family.has_value() && present_family.has_value(); } }; struct SwapChainSupportDetails { vk::SurfaceCapabilitiesKHR capabilities; std::vector formats; std::vector present_modes; }; static fn readFile(const std::string& filename) -> std::vector { std::ifstream file(filename, std::ios::ate | std::ios::binary); if (!file.is_open()) throw std::runtime_error("Failed to open file! " + filename); usize fileSize = static_cast(file.tellg()); std::vector buffer(fileSize); file.seekg(0); file.read(buffer.data(), static_cast(fileSize)); file.close(); return buffer; } fn initWindow() -> void { mGLFWInstance = vkfw::initUnique(); vkfw::WindowHints hints; hints.clientAPI = vkfw::ClientAPI::eNone; // hints.resizable = false; mWindow = vkfw::createWindowUnique(WIDTH, HEIGHT, "Vulkan", hints); mWindow->setUserPointer(this); mWindow->setFramebufferSizeCallback(framebufferResizeCallback); } static fn framebufferResizeCallback(GLFWwindow* window, int /*width*/, int /*height*/) -> void { auto* app = std::bit_cast(glfwGetWindowUserPointer(window)); app->mFramebufferResized = true; } fn initVulkan() -> void { createInstance(); setupDebugMessenger(); createSurface(); pickPhysicalDevice(); createLogicalDevice(); createSwapChain(); createImageViews(); createRenderPass(); createGraphicsPipeline(); createFramebuffers(); createCommandPool(); createCommandBuffers(); createSyncObjects(); } fn mainLoop() -> void { while (!mWindow->shouldClose()) { vkfw::waitEvents(); drawFrame(); } mDevice->waitIdle(); } fn cleanupSwapChain() -> void { for (vk::UniqueFramebuffer& mSwapChainFramebuffer : mSwapChainFramebuffers) { mSwapChainFramebuffer.reset(); } for (vk::UniqueImageView& mSwapChainImageView : mSwapChainImageViews) { mSwapChainImageView.reset(); } mSwapChain.reset(); } fn recreateSwapChain() -> void { u32 width = 0, height = 0; std::tie(width, height) = mWindow->getFramebufferSize(); while (width == 0 || height == 0) { std::tie(width, height) = mWindow->getFramebufferSize(); vkfw::waitEvents(); } mDevice->waitIdle(); cleanupSwapChain(); createSwapChain(); createImageViews(); createFramebuffers(); } fn createInstance() -> void { if (enableValidationLayers && !checkValidationLayerSupport()) throw std::runtime_error("Validation layers requested, but not available!"); vk::ApplicationInfo appInfo { .pApplicationName = "Hello Triangle", .applicationVersion = 1, .pEngineName = "No Engine", .engineVersion = 1, .apiVersion = vk::ApiVersion12 }; // Retrieve extensions using custom function std::vector extensions = getRequiredExtensions(); #ifdef __APPLE__ // Enable the portability extension and set flags extensions.emplace_back(vk::KHRPortabilityEnumerationExtensionName); // Technically deprecated but vulkan complains if I don't include it for macOS // So instead of using the vk::KHRPortabilitySubsetExtensionName, I just use // the direct string. extensions.emplace_back("VK_KHR_get_physical_device_properties2"); #endif vk::InstanceCreateInfo createInfo { #ifdef __APPLE__ .flags = vk::InstanceCreateFlagBits::eEnumeratePortabilityKHR, #endif .pApplicationInfo = &appInfo, .enabledLayerCount = enableValidationLayers ? static_cast(validationLayers.size()) : 0, .ppEnabledLayerNames = enableValidationLayers ? validationLayers.data() : nullptr, .enabledExtensionCount = static_cast(extensions.size()), .ppEnabledExtensionNames = extensions.data() }; #ifndef NDEBUG fmt::println("Available extensions:"); for (const char* extension : extensions) fmt::println("\t{}", extension); #endif mInstance = vk::createInstanceUnique(createInfo); VULKAN_HPP_DEFAULT_DISPATCHER.init(mInstance.get()); } fn setupDebugMessenger() -> void { if (!enableValidationLayers) return; vk::DebugUtilsMessengerCreateInfoEXT messengerCreateInfo { .messageSeverity = vk::DebugUtilsMessageSeverityFlagBitsEXT::eVerbose | vk::DebugUtilsMessageSeverityFlagBitsEXT::eWarning | vk::DebugUtilsMessageSeverityFlagBitsEXT::eError, .messageType = vk::DebugUtilsMessageTypeFlagBitsEXT::eGeneral | vk::DebugUtilsMessageTypeFlagBitsEXT::eValidation | vk::DebugUtilsMessageTypeFlagBitsEXT::ePerformance, .pfnUserCallback = debugCallback, }; mDebugMessenger = mInstance->createDebugUtilsMessengerEXTUnique(messengerCreateInfo, nullptr); } fn createSurface() -> void { mSurface = vkfw::createWindowSurfaceUnique(mInstance.get(), mWindow.get()); } fn pickPhysicalDevice() -> void { std::vector devices = mInstance->enumeratePhysicalDevices(); if (devices.empty()) throw std::runtime_error("Failed to find GPUs with Vulkan support!"); #ifndef NDEBUG fmt::println("Available devices:"); #endif for (const vk::PhysicalDevice& device : devices) { #ifndef NDEBUG vk::PhysicalDeviceProperties properties = device.getProperties(); fmt::println("\t{}", properties.deviceName.data()); #endif if (isDeviceSuitable(device)) { mPhysicalDevice = device; break; } } if (!mPhysicalDevice) throw std::runtime_error("Failed to find a suitable GPU!"); } fn createLogicalDevice() -> void { QueueFamilyIndices indices = findQueueFamilies(mPhysicalDevice); std::vector queueCreateInfos; std::set uniqueQueueFamilies = { indices.graphics_family.value(), indices.present_family.value() }; f32 queuePriority = 1.0F; for (u32 queueFamily : uniqueQueueFamilies) { vk::DeviceQueueCreateInfo queueCreateInfo { .queueFamilyIndex = queueFamily, .queueCount = 1, .pQueuePriorities = &queuePriority }; queueCreateInfos.emplace_back(queueCreateInfo); } vk::PhysicalDeviceFeatures deviceFeatures; vk::DeviceCreateInfo createInfo { .queueCreateInfoCount = static_cast(queueCreateInfos.size()), .pQueueCreateInfos = queueCreateInfos.data(), .enabledExtensionCount = static_cast(deviceExtensions.size()), .ppEnabledExtensionNames = deviceExtensions.data(), .pEnabledFeatures = &deviceFeatures }; mDevice = mPhysicalDevice.createDeviceUnique(createInfo); mGraphicsQueue = mDevice->getQueue(indices.graphics_family.value(), 0); mPresentQueue = mDevice->getQueue(indices.present_family.value(), 0); } fn createSwapChain() -> void { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(mPhysicalDevice); vk::SurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats); vk::PresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.present_modes); vk::Extent2D extent = chooseSwapExtent(swapChainSupport.capabilities); u32 imageCount = swapChainSupport.capabilities.minImageCount + 1; if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) imageCount = swapChainSupport.capabilities.maxImageCount; QueueFamilyIndices indices = findQueueFamilies(mPhysicalDevice); std::array queueFamilyIndices = { indices.graphics_family.value(), indices.present_family.value() }; vk::SwapchainCreateInfoKHR createInfo { .surface = mSurface.get(), .minImageCount = imageCount, .imageFormat = surfaceFormat.format, .imageColorSpace = surfaceFormat.colorSpace, .imageExtent = extent, .imageArrayLayers = 1, .imageUsage = vk::ImageUsageFlagBits::eColorAttachment, .imageSharingMode = indices.graphics_family != indices.present_family ? vk::SharingMode::eConcurrent : vk::SharingMode::eExclusive, .queueFamilyIndexCount = static_cast(indices.graphics_family != indices.present_family ? 2 : 0), .pQueueFamilyIndices = indices.graphics_family != indices.present_family ? queueFamilyIndices.data() : nullptr, .preTransform = swapChainSupport.capabilities.currentTransform, .compositeAlpha = vk::CompositeAlphaFlagBitsKHR::eOpaque, .presentMode = presentMode, .clipped = vk::True, .oldSwapchain = nullptr, }; mSwapChain = mDevice->createSwapchainKHRUnique(createInfo); mSwapChainImages = mDevice->getSwapchainImagesKHR(mSwapChain.get()); mSwapChainImageFormat = surfaceFormat.format; mSwapChainExtent = extent; } fn createImageViews() -> void { mSwapChainImageViews.resize(mSwapChainImages.size()); for (u32 i = 0; i < mSwapChainImages.size(); i++) { vk::ImageViewCreateInfo createInfo { .image = mSwapChainImages[i], .viewType = vk::ImageViewType::e2D, .format = mSwapChainImageFormat, // clang-format off .components = { .r = vk::ComponentSwizzle::eIdentity, .g = vk::ComponentSwizzle::eIdentity, .b = vk::ComponentSwizzle::eIdentity, .a = vk::ComponentSwizzle::eIdentity }, .subresourceRange = { .aspectMask = vk::ImageAspectFlagBits::eColor, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1 }, // clang-format on }; mSwapChainImageViews[i] = mDevice->createImageViewUnique(createInfo); } } fn createRenderPass() -> void { vk::AttachmentDescription colorAttachment { .format = mSwapChainImageFormat, .samples = vk::SampleCountFlagBits::e1, .loadOp = vk::AttachmentLoadOp::eClear, .storeOp = vk::AttachmentStoreOp::eStore, .stencilLoadOp = vk::AttachmentLoadOp::eDontCare, .stencilStoreOp = vk::AttachmentStoreOp::eDontCare, .initialLayout = vk::ImageLayout::eUndefined, .finalLayout = vk::ImageLayout::ePresentSrcKHR, }; vk::AttachmentReference colorAttachmentRef { .attachment = 0, .layout = vk::ImageLayout::eColorAttachmentOptimal, }; vk::SubpassDescription subpass { .pipelineBindPoint = vk::PipelineBindPoint::eGraphics, .colorAttachmentCount = 1, .pColorAttachments = &colorAttachmentRef, }; vk::RenderPassCreateInfo renderPassInfo { .attachmentCount = 1, .pAttachments = &colorAttachment, .subpassCount = 1, .pSubpasses = &subpass, }; mRenderPass = mDevice->createRenderPassUnique(renderPassInfo); } fn createGraphicsPipeline() -> void { std::vector vertShaderCode = readFile("src/shaders/vert.spv"); std::vector fragShaderCode = readFile("src/shaders/frag.spv"); vk::UniqueShaderModule vertShaderModule = createShaderModule(vertShaderCode); vk::UniqueShaderModule fragShaderModule = createShaderModule(fragShaderCode); vk::PipelineShaderStageCreateInfo vertShaderStageInfo { .stage = vk::ShaderStageFlagBits::eVertex, .module = vertShaderModule.get(), .pName = "main", }; vk::PipelineShaderStageCreateInfo fragShaderStageInfo { .stage = vk::ShaderStageFlagBits::eFragment, .module = fragShaderModule.get(), .pName = "main", }; std::array shaderStages = { vertShaderStageInfo, fragShaderStageInfo }; vk::PipelineVertexInputStateCreateInfo vertexInputInfo { .vertexBindingDescriptionCount = 0, .pVertexBindingDescriptions = nullptr, .vertexAttributeDescriptionCount = 0, .pVertexAttributeDescriptions = nullptr, }; vk::PipelineInputAssemblyStateCreateInfo inputAssembly { .topology = vk::PrimitiveTopology::eTriangleList, .primitiveRestartEnable = vk::False, }; vk::PipelineViewportStateCreateInfo viewportState { .viewportCount = 1, .scissorCount = 1, }; vk::PipelineRasterizationStateCreateInfo rasterizer { .depthClampEnable = vk::False, .rasterizerDiscardEnable = vk::False, .polygonMode = vk::PolygonMode::eFill, .cullMode = vk::CullModeFlagBits::eBack, .frontFace = vk::FrontFace::eClockwise, .depthBiasEnable = vk::False, .lineWidth = 1.0F, }; vk::PipelineMultisampleStateCreateInfo multisampling { .rasterizationSamples = vk::SampleCountFlagBits::e1, .sampleShadingEnable = vk::False, }; vk::PipelineColorBlendAttachmentState colorBlendAttachment { .blendEnable = vk::False, .colorWriteMask = vk::ColorComponentFlagBits::eR | vk::ColorComponentFlagBits::eG | vk::ColorComponentFlagBits::eB | vk::ColorComponentFlagBits::eA, }; vk::PipelineColorBlendStateCreateInfo colorBlending { .logicOpEnable = vk::False, .logicOp = vk::LogicOp::eCopy, .attachmentCount = 1, .pAttachments = &colorBlendAttachment, .blendConstants = std::array { 0.0F, 0.0F, 0.0F, 0.0F }, }; std::vector dynamicStates = { vk::DynamicState::eViewport, vk::DynamicState::eScissor }; vk::PipelineDynamicStateCreateInfo dynamicState { .dynamicStateCount = static_cast(dynamicStates.size()), .pDynamicStates = dynamicStates.data(), }; vk::PipelineLayoutCreateInfo pipelineLayoutInfo { .setLayoutCount = 0, .pushConstantRangeCount = 0, }; mPipelineLayout = mDevice->createPipelineLayoutUnique(pipelineLayoutInfo); vk::GraphicsPipelineCreateInfo pipelineInfo { .stageCount = static_cast(shaderStages.size()), .pStages = shaderStages.data(), .pVertexInputState = &vertexInputInfo, .pInputAssemblyState = &inputAssembly, .pViewportState = &viewportState, .pRasterizationState = &rasterizer, .pMultisampleState = &multisampling, .pColorBlendState = &colorBlending, .pDynamicState = &dynamicState, .layout = mPipelineLayout.get(), .renderPass = mRenderPass.get(), .subpass = 0, }; vk::Result graphicsPipelineResult = vk::Result::eSuccess; vk::UniquePipeline graphicsPipelineValue; std::tie(graphicsPipelineResult, graphicsPipelineValue) = mDevice->createGraphicsPipelineUnique(nullptr, pipelineInfo).asTuple(); if (graphicsPipelineResult != vk::Result::eSuccess) throw std::runtime_error("Failed to create graphics pipeline!"); mGraphicsPipeline = std::move(graphicsPipelineValue); } fn createFramebuffers() -> void { mSwapChainFramebuffers.resize(mSwapChainImageViews.size()); for (usize i = 0; i < mSwapChainImageViews.size(); i++) { vk::FramebufferCreateInfo framebufferInfo { .renderPass = mRenderPass.get(), .attachmentCount = 1, .pAttachments = &mSwapChainImageViews[i].get(), .width = mSwapChainExtent.width, .height = mSwapChainExtent.height, .layers = 1, }; mSwapChainFramebuffers[i] = mDevice->createFramebufferUnique(framebufferInfo); } } fn createCommandPool() -> void { QueueFamilyIndices queueFamilyIndices = findQueueFamilies(mPhysicalDevice); vk::CommandPoolCreateInfo poolInfo { .flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer, .queueFamilyIndex = queueFamilyIndices.graphics_family.value(), }; mCommandPool = mDevice->createCommandPoolUnique(poolInfo); } fn createCommandBuffers() -> void { mCommandBuffers.resize(MAX_FRAMES_IN_FLIGHT); vk::CommandBufferAllocateInfo allocInfo { .commandPool = mCommandPool.get(), .level = vk::CommandBufferLevel::ePrimary, .commandBufferCount = static_cast(mCommandBuffers.size()) }; mCommandBuffers = mDevice->allocateCommandBuffersUnique(allocInfo); } fn recordCommandBuffer(vk::CommandBuffer commandBuffer, u32 imageIndex) -> void { vk::CommandBufferBeginInfo beginInfo {}; commandBuffer.begin(beginInfo); vk::ClearValue clearColor { .color = { .float32 = std::array { 0.0F, 0.0F, 0.0F, 1.0F } } }; vk::RenderPassBeginInfo renderPassInfo { .renderPass = mRenderPass.get(), .framebuffer = mSwapChainFramebuffers[imageIndex].get(), .renderArea = { .offset = { .x = 0, .y = 0 }, .extent = mSwapChainExtent }, .clearValueCount = 1, .pClearValues = &clearColor, }; commandBuffer.beginRenderPass(renderPassInfo, vk::SubpassContents::eInline); commandBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, mGraphicsPipeline.get()); vk::Viewport viewport { .x = 0.0F, .y = 0.0F, .width = static_cast(mSwapChainExtent.width), .height = static_cast(mSwapChainExtent.height), .minDepth = 0.0F, .maxDepth = 1.0F, }; vk::Rect2D scissor { .offset = { 0, 0 }, .extent = mSwapChainExtent, }; commandBuffer.setViewport(0, viewport); commandBuffer.setScissor(0, scissor); commandBuffer.draw(3, 1, 0, 0); commandBuffer.endRenderPass(); commandBuffer.end(); } fn createSyncObjects() -> void { mImageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT); mRenderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT); mInFlightFences.resize(MAX_FRAMES_IN_FLIGHT); vk::SemaphoreCreateInfo semaphoreInfo {}; vk::FenceCreateInfo fenceInfo { .flags = vk::FenceCreateFlagBits::eSignaled }; for (usize idx = 0; idx < MAX_FRAMES_IN_FLIGHT; idx++) { mImageAvailableSemaphores[idx] = mDevice->createSemaphoreUnique(semaphoreInfo); mRenderFinishedSemaphores[idx] = mDevice->createSemaphoreUnique(semaphoreInfo); mInFlightFences[idx] = mDevice->createFenceUnique(fenceInfo); } } fn drawFrame() -> void { try { vk::Result result = mDevice->waitForFences(mInFlightFences[mCurrentFrame].get(), vk::Bool32(vk::True), UINT64_MAX); if (result != vk::Result::eSuccess) throw std::runtime_error("Failed to wait for fences!"); vk::Result imageIndexResult = vk::Result::eSuccess; u32 imageIndexValue = 0; std::tie(imageIndexResult, imageIndexValue) = mDevice->acquireNextImageKHR( mSwapChain.get(), UINT64_MAX, mImageAvailableSemaphores[mCurrentFrame].get(), nullptr ); if (imageIndexResult == vk::Result::eErrorOutOfDateKHR) { recreateSwapChain(); return; } if (imageIndexResult != vk::Result::eSuccess && imageIndexResult != vk::Result::eSuboptimalKHR) throw std::runtime_error("Failed to acquire swap chain image!"); mDevice->resetFences(mInFlightFences[mCurrentFrame].get()); mCommandBuffers[mCurrentFrame]->reset(vk::CommandBufferResetFlagBits::eReleaseResources); recordCommandBuffer(mCommandBuffers[mCurrentFrame].get(), imageIndexValue); std::array waitStages = { vk::PipelineStageFlagBits::eColorAttachmentOutput }; vk::SubmitInfo submitInfo { .waitSemaphoreCount = 1, .pWaitSemaphores = &mImageAvailableSemaphores[mCurrentFrame].get(), .pWaitDstStageMask = waitStages.data(), .commandBufferCount = 1, .pCommandBuffers = &mCommandBuffers[mCurrentFrame].get(), .signalSemaphoreCount = 1, .pSignalSemaphores = &mRenderFinishedSemaphores[mCurrentFrame].get(), }; mGraphicsQueue.submit(submitInfo, mInFlightFences[mCurrentFrame].get()); vk::PresentInfoKHR presentInfo { .waitSemaphoreCount = 1, .pWaitSemaphores = &mRenderFinishedSemaphores[mCurrentFrame].get(), .swapchainCount = 1, .pSwapchains = &mSwapChain.get(), .pImageIndices = &imageIndexValue, }; vk::Result presentResult = mPresentQueue.presentKHR(presentInfo); fmt::println("Present result: {}", vk::to_string(presentResult)); if (presentResult == vk::Result::eErrorOutOfDateKHR || presentResult == vk::Result::eSuboptimalKHR || mFramebufferResized) { mFramebufferResized = false; recreateSwapChain(); } else if (presentResult != vk::Result::eSuccess) { throw std::runtime_error("Failed to present swap chain image!"); } mCurrentFrame = (mCurrentFrame + 1) % MAX_FRAMES_IN_FLIGHT; } catch (vk::OutOfDateKHRError& err) { mFramebufferResized = false; recreateSwapChain(); return; } } fn createShaderModule(const std::vector& code) -> vk::UniqueShaderModule { vk::ShaderModuleCreateInfo createInfo { .codeSize = code.size(), .pCode = std::bit_cast(code.data()) }; return mDevice->createShaderModuleUnique(createInfo); } static fn chooseSwapSurfaceFormat(const std::vector& availableFormats ) -> vk::SurfaceFormatKHR { for (const auto& availableFormat : availableFormats) if (availableFormat.format == vk::Format::eB8G8R8A8Srgb && availableFormat.colorSpace == vk::ColorSpaceKHR::eSrgbNonlinear) return availableFormat; return availableFormats[0]; } static fn chooseSwapPresentMode(const std::vector& availablePresentModes ) -> vk::PresentModeKHR { for (const auto& availablePresentMode : availablePresentModes) if (availablePresentMode == vk::PresentModeKHR::eMailbox) return availablePresentMode; return vk::PresentModeKHR::eFifo; } fn chooseSwapExtent(const vk::SurfaceCapabilitiesKHR capabilities) -> vk::Extent2D { if (capabilities.currentExtent.width != UINT32_MAX) return capabilities.currentExtent; u32 width = 0, height = 0; std::tie(width, height) = mWindow->getFramebufferSize(); vk::Extent2D actualExtent = { width, height }; actualExtent.width = std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width); actualExtent.height = std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height); return actualExtent; } fn querySwapChainSupport(vk::PhysicalDevice device) -> SwapChainSupportDetails { SwapChainSupportDetails details; details.capabilities = device.getSurfaceCapabilitiesKHR(mSurface.get()); details.formats = device.getSurfaceFormatsKHR(mSurface.get()); details.present_modes = device.getSurfacePresentModesKHR(mSurface.get()); return details; } fn isDeviceSuitable(vk::PhysicalDevice device) -> bool { QueueFamilyIndices indices = findQueueFamilies(device); bool extensionsSupported = checkDeviceExtensionSupport(device); bool swapChainAdequate = false; if (extensionsSupported) { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device); swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.present_modes.empty(); } return indices.isComplete() && extensionsSupported && swapChainAdequate; } static fn checkDeviceExtensionSupport(vk::PhysicalDevice device) -> bool { std::vector availableExtensions = device.enumerateDeviceExtensionProperties(); std::set requiredExtensions(deviceExtensions.begin(), deviceExtensions.end()); for (const vk::ExtensionProperties& extension : availableExtensions) requiredExtensions.erase(extension.extensionName); return requiredExtensions.empty(); } fn findQueueFamilies(vk::PhysicalDevice device) -> QueueFamilyIndices { QueueFamilyIndices indices; std::vector queueFamilies = device.getQueueFamilyProperties(); for (u32 i = 0; i < queueFamilies.size(); i++) { if (queueFamilies[i].queueFlags & vk::QueueFlagBits::eGraphics) indices.graphics_family = i; vk::Bool32 queuePresentSupport = device.getSurfaceSupportKHR(i, mSurface.get()); if (queuePresentSupport) indices.present_family = i; if (indices.isComplete()) break; } return indices; } static fn getRequiredExtensions() -> std::vector { std::span extensionsSpan = vkfw::getRequiredInstanceExtensions(); std::vector extensions(extensionsSpan.begin(), extensionsSpan.end()); if (enableValidationLayers) extensions.emplace_back(vk::EXTDebugUtilsExtensionName); return extensions; } static fn checkValidationLayerSupport() -> bool { std::vector availableLayers = vk::enumerateInstanceLayerProperties(); for (const char* layerName : validationLayers) { bool layerFound = false; for (const vk::LayerProperties& layerProperties : availableLayers) if (strcmp(layerName, layerProperties.layerName) == 0) { layerFound = true; break; } if (!layerFound) return false; } return true; } static VKAPI_ATTR fn VKAPI_CALL debugCallback( VkDebugUtilsMessageSeverityFlagBitsEXT /*messageSeverity*/, VkDebugUtilsMessageTypeFlagsEXT /*messageType*/, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* /*pUserData*/ ) -> vk::Bool32 { fmt::println("Validation layer: {}", pCallbackData->pMessage); return vk::False; } }; fn main() -> i32 { vk::DynamicLoader dynamicLoader; auto vkGetInstanceProcAddr = dynamicLoader.getProcAddress("vkGetInstanceProcAddr"); VULKAN_HPP_DEFAULT_DISPATCHER.init(vkGetInstanceProcAddr); VulkanApp app; try { app.run(); } catch (const std::exception& e) { fmt::println("{}", e.what()); return EXIT_FAILURE; } return EXIT_SUCCESS; }