ughghghgh

This commit is contained in:
Mars 2024-11-15 17:18:08 -05:00
parent 2f779d28ac
commit 414e7a8d3a
12 changed files with 1064 additions and 790 deletions

34
src/config/config.hpp Normal file
View file

@ -0,0 +1,34 @@
#pragma once
#include <array>
#include <vulkan/vulkan.hpp>
#include "../core/types.hpp"
namespace config {
// Window settings
constexpr i32 WIDTH = 1920;
constexpr i32 HEIGHT = 1080;
// Vulkan settings
constexpr i32 MAX_FRAMES_IN_FLIGHT = 2;
// Shader paths
constexpr const char* VERTEX_SHADER_PATH = "shaders/vertex.glsl";
constexpr const char* FRAGMENT_SHADER_PATH = "shaders/fragment.glsl";
// Validation layers for debug builds
#ifndef NDEBUG
constexpr std::array<const char*, 1> validationLayers = { "VK_LAYER_KHRONOS_validation" };
#endif
// Required device extensions (platform-specific)
#ifdef __APPLE__
constexpr std::array<const char*, 2> deviceExtensions = { vk::KHRSwapchainExtensionName,
vk::KHRPortabilitySubsetExtensionName };
#else
constexpr std::array<const char*, 1> deviceExtensions = { vk::KHRSwapchainExtensionName };
#endif
} // namespace config

95
src/core/device_utils.hpp Normal file
View file

@ -0,0 +1,95 @@
#pragma once
#include <unordered_set>
#include <vulkan/vulkan.hpp>
#include "../config/config.hpp"
#include "queue_structures.hpp"
#include "types.hpp"
namespace core {
/**
* @brief Gets the maximum usable sample count for MSAA.
*
* @param device Physical device to check
* @return vk::SampleCountFlagBits Maximum sample count supported
*/
static fn getMaxUsableSampleCount(const vk::PhysicalDevice& device) -> vk::SampleCountFlagBits {
vk::PhysicalDeviceProperties physicalDeviceProperties = device.getProperties();
vk::SampleCountFlags counts = physicalDeviceProperties.limits.framebufferColorSampleCounts &
physicalDeviceProperties.limits.framebufferDepthSampleCounts;
if (counts & vk::SampleCountFlagBits::e64)
return vk::SampleCountFlagBits::e64;
if (counts & vk::SampleCountFlagBits::e32)
return vk::SampleCountFlagBits::e32;
if (counts & vk::SampleCountFlagBits::e16)
return vk::SampleCountFlagBits::e16;
if (counts & vk::SampleCountFlagBits::e8)
return vk::SampleCountFlagBits::e8;
if (counts & vk::SampleCountFlagBits::e4)
return vk::SampleCountFlagBits::e4;
if (counts & vk::SampleCountFlagBits::e2)
return vk::SampleCountFlagBits::e2;
return vk::SampleCountFlagBits::e1;
}
/**
* @brief Checks if a device supports the required extensions.
*
* @param device Physical device to check
* @return bool True if all required extensions are supported
*/
static fn checkDeviceExtensionSupport(const vk::PhysicalDevice& device) -> bool {
// Get the available extensions
std::vector<vk::ExtensionProperties> availableExtensions = device.enumerateDeviceExtensionProperties();
// Create a set of required extensions
std::unordered_set<std::string> requiredExtensions(
config::deviceExtensions.begin(), config::deviceExtensions.end()
);
// For each available extension,
for (const auto& extension : availableExtensions)
// Remove it from the required extensions set if it's required
requiredExtensions.erase(extension.extensionName);
// If the set is empty, all required extensions are supported
return requiredExtensions.empty();
}
/**
* @brief Checks if a physical device is suitable for the application.
*
* @param device Physical device to check
* @param surface Surface to check presentation support against
* @return bool True if device is suitable, false otherwise
*/
static fn isDeviceSuitable(const vk::PhysicalDevice& device, const vk::SurfaceKHR& surface) -> bool {
// Get the queue families that support the required operations
QueueFamilyIndices qfIndices = QueueFamilyIndices::findQueueFamilies(device, surface);
// Check if the device supports the required extensions
bool extensionsSupported = checkDeviceExtensionSupport(device);
bool swapChainAdequate = false;
if (extensionsSupported) {
SwapChainSupportDetails swapChainSupport =
SwapChainSupportDetails::querySwapChainSupport(device, surface);
// Check if the swap chain is adequate (make sure it has
// at least one supported format and presentation mode)
swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.present_modes.empty();
}
// Check if the device supports the required features
vk::PhysicalDeviceFeatures supportedFeatures = device.getFeatures();
return qfIndices.isComplete() && extensionsSupported && swapChainAdequate &&
supportedFeatures.samplerAnisotropy;
}
} // namespace core

View file

@ -0,0 +1,144 @@
#pragma once
#include <optional>
#include <vector>
#include <vulkan/vulkan.hpp>
#include "types.hpp"
/**
* @brief Struct to store queue family indices.
*
* This struct contains the indices of the graphics and presentation queue families.
*/
struct QueueFamilyIndices {
std::optional<u32> graphics_family; ///< Index of graphics queue family
std::optional<u32> present_family; ///< Index of presentation queue family
/**
* @brief Check if all required queue families are found.
*
* @return True if both graphics and presentation families are found, false otherwise.
*/
fn isComplete() -> bool { return graphics_family.has_value() && present_family.has_value(); }
/**
* @brief Finds queue families that support graphics and presentation.
*
* @param device Physical device to check
* @param surface Surface to check presentation support against
* @return QueueFamilyIndices Struct containing queue family indices
*/
static fn findQueueFamilies(const vk::PhysicalDevice& device, const vk::SurfaceKHR& surface)
-> QueueFamilyIndices {
QueueFamilyIndices indices;
std::vector<vk::QueueFamilyProperties> queueFamilies = device.getQueueFamilyProperties();
for (u32 i = 0; i < queueFamilies.size(); i++) {
const auto& queueFamily = queueFamilies[i];
// Check for graphics support
if (queueFamily.queueFlags & vk::QueueFlagBits::eGraphics)
indices.graphics_family = i;
// Check for presentation support
if (device.getSurfaceSupportKHR(i, surface))
indices.present_family = i;
if (indices.isComplete())
break;
}
return indices;
}
};
/**
* @brief Struct to hold swap chain support details.
*
* This struct contains information about the surface capabilities,
* supported formats, and presentation modes.
*/
struct SwapChainSupportDetails {
vk::SurfaceCapabilitiesKHR capabilities; ///< Surface capabilities
std::vector<vk::SurfaceFormatKHR> formats; ///< Supported surface formats
std::vector<vk::PresentModeKHR> present_modes; ///< Supported presentation modes
/**
* @brief Queries swap chain support details from a physical device.
*
* @param device Physical device to query
* @param surface Surface to check against
* @return SwapChainSupportDetails Struct containing surface capabilities and supported formats
*/
static fn querySwapChainSupport(const vk::PhysicalDevice& device, const vk::SurfaceKHR& surface)
-> SwapChainSupportDetails {
SwapChainSupportDetails details;
details.capabilities = device.getSurfaceCapabilitiesKHR(surface);
details.formats = device.getSurfaceFormatsKHR(surface);
details.present_modes = device.getSurfacePresentModesKHR(surface);
return details;
}
/**
* @brief Chooses the best surface format for the swap chain.
*
* @param availableFormats List of available surface formats
* @return vk::SurfaceFormatKHR The chosen surface format
*/
static fn chooseSwapSurfaceFormat(const std::vector<vk::SurfaceFormatKHR>& availableFormats
) -> vk::SurfaceFormatKHR {
// Prefer SRGB with nonlinear color space
for (const auto& availableFormat : availableFormats)
if (availableFormat.format == vk::Format::eB8G8R8A8Srgb &&
availableFormat.colorSpace == vk::ColorSpaceKHR::eSrgbNonlinear)
return availableFormat;
// If preferred format not found, use first available
return availableFormats[0];
}
/**
* @brief Chooses the best presentation mode for the swap chain.
*
* @param availablePresentModes List of available presentation modes
* @return vk::PresentModeKHR The chosen presentation mode
*/
static fn chooseSwapPresentMode(const std::vector<vk::PresentModeKHR>& availablePresentModes
) -> vk::PresentModeKHR {
// Prefer mailbox mode (triple buffering)
for (const auto& availablePresentMode : availablePresentModes)
if (availablePresentMode == vk::PresentModeKHR::eMailbox)
return availablePresentMode;
// Fallback to FIFO (vsync)
return vk::PresentModeKHR::eFifo;
}
/**
* @brief Chooses the swap extent (resolution) for the swap chain.
*
* @param capabilities Surface capabilities
* @param width Desired width
* @param height Desired height
* @return vk::Extent2D The chosen swap extent
*/
static fn chooseSwapExtent(const vk::SurfaceCapabilitiesKHR& capabilities, u32 width, u32 height)
-> vk::Extent2D {
if (capabilities.currentExtent.width != std::numeric_limits<u32>::max())
return capabilities.currentExtent;
vk::Extent2D actualExtent = { width, height };
actualExtent.width =
std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width);
actualExtent.height =
std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height);
return actualExtent;
}
};

147
src/graphics/camera.hpp Normal file
View file

@ -0,0 +1,147 @@
#pragma once
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include "../core/types.hpp"
#include "vkfw.hpp"
// Camera speed constant from main.cpp
constexpr f64 CAMERA_SPEED = 1.0;
/**
* @brief Represents a 3D camera in the scene.
*/
struct Camera {
glm::dvec3 position; ///< Camera's position in 3D space
glm::dvec3 front; ///< Direction the camera is facing
glm::dvec3 up; ///< Camera's up vector
glm::dvec3 right; ///< Camera's right vector
f64 yaw; ///< Yaw angle (rotation around vertical axis)
f64 pitch; ///< Pitch angle (rotation around horizontal axis)
/**
* @brief Constructs a Camera with default settings.
*/
Camera()
: position(2.0, 2.0, 2.0),
front(glm::normalize(glm::dvec3(-2.0, -2.0, -2.0))),
up(0.0, 0.0, 1.0),
right(glm::normalize(glm::cross(front, up))),
yaw(-135.0),
pitch(-35.26) {
updateCameraVectors();
}
/**
* @brief Gets the camera's current position.
* @return The camera's position as a 3D vector.
*/
[[nodiscard]] fn getPosition() const -> glm::dvec3 { return position; }
/**
* @brief Calculates and returns the view matrix for the camera.
* @return The view matrix as a 4x4 matrix.
*/
[[nodiscard]] fn getViewMatrix() const -> glm::mat4 { return glm::lookAt(position, position + front, up); }
/**
* @brief Moves the camera forward.
* @param deltaTime Time elapsed since last frame.
*/
fn moveForward(f64 deltaTime) -> void {
glm::dvec3 horizontalFront = glm::normalize(glm::dvec3(front.x, front.y, 0.0));
position += horizontalFront * CAMERA_SPEED * deltaTime;
}
/**
* @brief Moves the camera backward.
* @param deltaTime Time elapsed since last frame.
*/
fn moveBackward(f64 deltaTime) -> void {
glm::dvec3 horizontalFront = glm::normalize(glm::dvec3(front.x, front.y, 0.0));
position -= horizontalFront * CAMERA_SPEED * deltaTime;
}
/**
* @brief Moves the camera to the left.
* @param deltaTime Time elapsed since last frame.
*/
fn moveLeft(f64 deltaTime) -> void {
glm::dvec3 horizontalRight = glm::normalize(glm::dvec3(right.x, right.y, 0.0));
position -= horizontalRight * CAMERA_SPEED * deltaTime;
}
/**
* @brief Moves the camera to the right.
* @param deltaTime Time elapsed since last frame.
*/
fn moveRight(f64 deltaTime) -> void {
glm::dvec3 horizontalRight = glm::normalize(glm::dvec3(right.x, right.y, 0.0));
position += horizontalRight * CAMERA_SPEED * deltaTime;
}
/**
* @brief Moves the camera upward.
* @param deltaTime Time elapsed since last frame.
*/
fn moveUp(f64 deltaTime) -> void { position += glm::dvec3(0.0, 0.0, 1.0) * CAMERA_SPEED * deltaTime; }
/**
* @brief Moves the camera downward.
* @param deltaTime Time elapsed since last frame.
*/
fn moveDown(f64 deltaTime) -> void { position -= glm::dvec3(0.0, 0.0, 1.0) * CAMERA_SPEED * deltaTime; }
/**
* @brief Rotates the camera based on mouse movement.
* @param xoffset Horizontal mouse movement.
* @param yoffset Vertical mouse movement.
*/
fn rotate(f64 xoffset, f64 yoffset) -> void {
const f64 sensitivity = 0.1;
yaw += xoffset * sensitivity;
pitch += yoffset * sensitivity;
pitch = glm::clamp(pitch, -89.0, 89.0);
updateCameraVectors();
}
/**
* @brief Processes input for camera movement and rotation.
* @param window The GLFW window.
* @param camera The camera to be controlled.
* @param deltaTime Time elapsed since last frame.
* @param cameraSpeed Speed multiplier for camera movement.
*/
static fn processInput(vkfw::Window& window, Camera& camera, const f32& deltaTime, const f32& cameraSpeed)
-> void {
if (window.getKey(vkfw::Key::eW) == vkfw::eTrue)
camera.moveForward(static_cast<f64>(deltaTime * cameraSpeed));
if (window.getKey(vkfw::Key::eA) == vkfw::eTrue)
camera.moveLeft(static_cast<f64>(deltaTime * cameraSpeed));
if (window.getKey(vkfw::Key::eS) == vkfw::eTrue)
camera.moveBackward(static_cast<f64>(deltaTime * cameraSpeed));
if (window.getKey(vkfw::Key::eD) == vkfw::eTrue)
camera.moveRight(static_cast<f64>(deltaTime * cameraSpeed));
if (window.getKey(vkfw::Key::eSpace) == vkfw::eTrue)
camera.moveUp(static_cast<f64>(deltaTime * cameraSpeed));
if (window.getKey(vkfw::Key::eLeftShift) == vkfw::eTrue)
camera.moveDown(static_cast<f64>(deltaTime * cameraSpeed));
}
private:
/**
* @brief Updates the camera's orientation vectors based on yaw and pitch.
*/
fn updateCameraVectors() -> void {
front = glm::normalize(glm::dvec3(
cos(glm::radians(yaw)) * cos(glm::radians(pitch)),
sin(glm::radians(yaw)) * cos(glm::radians(pitch)),
sin(glm::radians(pitch))
));
right = glm::normalize(glm::cross(front, glm::dvec3(0.0, 0.0, 1.0)));
up = glm::normalize(glm::cross(right, front));
}
};

View file

@ -0,0 +1,278 @@
#pragma once
#define VULKAN_HPP_NO_CONSTRUCTORS
#include <vulkan/vulkan.hpp>
#include "../core/types.hpp"
namespace graphics {
/**
* @brief Creates a Vulkan image view.
*
* This function creates and returns a unique Vulkan image view using the provided parameters.
*
* @param device The logical device to create the view on
* @param image The Vulkan image for which to create the view
* @param format The format of the image
* @param aspectFlags The aspect flags for the image view
* @param mipLevels The number of mip levels for the image view
* @return vk::UniqueImageView A unique handle to the created Vulkan image view
*
* @details
* The function creates an image view with the following properties:
* - 2D view type
* - Subresource range starting from base mip level 0
* - Single array layer starting from base array layer 0
*/
static fn createImageView(
const vk::Device& device,
const vk::Image& image,
const vk::Format& format,
const vk::ImageAspectFlags& aspectFlags,
const u32& mipLevels
) -> vk::UniqueImageView {
return device.createImageViewUnique({
.image = image,
.viewType = vk::ImageViewType::e2D,
.format = format,
.subresourceRange = {
.aspectMask = aspectFlags,
.baseMipLevel = 0,
.levelCount = mipLevels,
.baseArrayLayer = 0,
.layerCount = 1,
},
});
}
/**
* @brief Finds a suitable memory type for allocation.
*
* @param physicalDevice The physical device to check
* @param typeFilter Filter for memory types
* @param properties Required memory properties
* @return u32 Index of the suitable memory type
*/
static fn findMemoryType(
const vk::PhysicalDevice& physicalDevice,
const u32& typeFilter,
const vk::MemoryPropertyFlags& properties
) -> u32 {
vk::PhysicalDeviceMemoryProperties memProperties = physicalDevice.getMemoryProperties();
for (u32 i = 0; i < memProperties.memoryTypeCount; i++)
if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties)
return i;
throw std::runtime_error("Failed to find suitable memory type!");
}
/**
* @brief Creates a Vulkan image and allocates memory for it.
*
* @param device The logical device to create the image on
* @param width Width of the image
* @param height Height of the image
* @param mipLevels Number of mip levels
* @param numSamples Number of samples for multisampling
* @param format Format of the image
* @param tiling Tiling mode of the image
* @param usage Usage flags for the image
* @param properties Memory property flags
* @return std::pair<vk::UniqueImage, vk::UniqueDeviceMemory> A pair containing the image and its memory
*/
static fn createImage(
const vk::Device& device,
const vk::PhysicalDevice& physicalDevice,
const u32& width,
const u32& height,
const u32& mipLevels,
const vk::SampleCountFlagBits& numSamples,
const vk::Format& format,
const vk::ImageTiling& tiling,
const vk::ImageUsageFlags& usage,
const vk::MemoryPropertyFlags& properties
) -> std::pair<vk::UniqueImage, vk::UniqueDeviceMemory> {
// Define the image creation info
vk::ImageCreateInfo imageInfo {
.imageType = vk::ImageType::e2D,
.format = format,
.extent = { .width = width, .height = height, .depth = 1 },
.mipLevels = mipLevels,
.arrayLayers = 1,
.samples = numSamples,
.tiling = tiling,
.usage = usage,
.sharingMode = vk::SharingMode::eExclusive,
.initialLayout = vk::ImageLayout::eUndefined,
};
// Create the image
vk::UniqueImage image = device.createImageUnique(imageInfo);
// Get the memory requirements for the image
vk::MemoryRequirements memRequirements = device.getImageMemoryRequirements(image.get());
// Memory allocation info
vk::MemoryAllocateInfo allocInfo {
.allocationSize = memRequirements.size,
.memoryTypeIndex = findMemoryType(physicalDevice, memRequirements.memoryTypeBits, properties),
};
// Allocate memory
vk::UniqueDeviceMemory imageMemory = device.allocateMemoryUnique(allocInfo);
// Bind the allocated memory to the image
device.bindImageMemory(image.get(), imageMemory.get(), 0);
return { std::move(image), std::move(imageMemory) };
}
/**
* @brief Transitions an image between layouts.
*
* @param device The logical device
* @param commandPool The command pool to allocate command buffers from
* @param queue The queue to submit commands to
* @param image The image to transition
* @param oldLayout The old layout
* @param newLayout The new layout
* @param mipLevels Number of mip levels
*/
static fn transitionImageLayout(
const vk::Device& device,
const vk::CommandPool& commandPool,
const vk::Queue& queue,
const vk::Image& image,
const vk::ImageLayout& oldLayout,
const vk::ImageLayout& newLayout,
const u32& mipLevels
) -> void {
// Create a command buffer
vk::CommandBufferAllocateInfo allocInfo {
.commandPool = commandPool,
.level = vk::CommandBufferLevel::ePrimary,
.commandBufferCount = 1,
};
vk::UniqueCommandBuffer commandBuffer = std::move(device.allocateCommandBuffersUnique(allocInfo)[0]);
// Begin recording
commandBuffer->begin({ .flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
// Define the image memory barrier
vk::ImageMemoryBarrier barrier {
.oldLayout = oldLayout,
.newLayout = newLayout,
.srcQueueFamilyIndex = vk::QueueFamilyIgnored,
.dstQueueFamilyIndex = vk::QueueFamilyIgnored,
.image = image,
.subresourceRange = {
.aspectMask = vk::ImageAspectFlagBits::eColor,
.baseMipLevel = 0,
.levelCount = mipLevels,
.baseArrayLayer = 0,
.layerCount = 1,
},
};
// Define the source and destination stages
vk::PipelineStageFlags sourceStage;
vk::PipelineStageFlags destinationStage;
// Define the access masks
if (oldLayout == vk::ImageLayout::eUndefined && newLayout == vk::ImageLayout::eTransferDstOptimal) {
barrier.srcAccessMask = {};
barrier.dstAccessMask = vk::AccessFlagBits::eTransferWrite;
sourceStage = vk::PipelineStageFlagBits::eTopOfPipe;
destinationStage = vk::PipelineStageFlagBits::eTransfer;
} else if (oldLayout == vk::ImageLayout::eTransferDstOptimal &&
newLayout == vk::ImageLayout::eShaderReadOnlyOptimal) {
barrier.srcAccessMask = vk::AccessFlagBits::eTransferWrite;
barrier.dstAccessMask = vk::AccessFlagBits::eShaderRead;
sourceStage = vk::PipelineStageFlagBits::eTransfer;
destinationStage = vk::PipelineStageFlagBits::eFragmentShader;
} else {
// Ensure that the layout transition is supported
throw std::invalid_argument("Unsupported layout transition!");
}
// Record the pipeline barrier
commandBuffer->pipelineBarrier(sourceStage, destinationStage, {}, {}, {}, barrier);
// End recording
commandBuffer->end();
// Submit the command buffer
vk::SubmitInfo submitInfo {
.commandBufferCount = 1,
.pCommandBuffers = &commandBuffer.get(),
};
queue.submit(submitInfo);
queue.waitIdle();
}
/**
* @brief Copies data from a buffer to an image.
*
* @param device The logical device
* @param commandPool The command pool to allocate command buffers from
* @param queue The queue to submit commands to
* @param buffer Source buffer
* @param image Destination image
* @param width Image width
* @param height Image height
*/
static fn copyBufferToImage(
const vk::Device& device,
const vk::CommandPool& commandPool,
const vk::Queue& queue,
const vk::Buffer& buffer,
const vk::Image& image,
const u32& width,
const u32& height
) -> void {
// Create a command buffer
vk::CommandBufferAllocateInfo allocInfo {
.commandPool = commandPool,
.level = vk::CommandBufferLevel::ePrimary,
.commandBufferCount = 1,
};
vk::UniqueCommandBuffer commandBuffer = std::move(device.allocateCommandBuffersUnique(allocInfo)[0]);
// Begin recording
commandBuffer->begin({ .flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
vk::BufferImageCopy region {
.bufferOffset = 0,
.bufferRowLength = 0,
.bufferImageHeight = 0,
.imageSubresource = { .aspectMask = vk::ImageAspectFlagBits::eColor,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1 },
.imageOffset = { .x = 0, .y = 0, .z = 0 },
.imageExtent = { .width = width, .height = height, .depth = 1 },
};
commandBuffer->copyBufferToImage(buffer, image, vk::ImageLayout::eTransferDstOptimal, 1, &region);
// End recording
commandBuffer->end();
// Submit the command buffer
vk::SubmitInfo submitInfo {
.commandBufferCount = 1,
.pCommandBuffers = &commandBuffer.get(),
};
queue.submit(submitInfo);
queue.waitIdle();
}
} // namespace graphics

230
src/graphics/shaders.hpp Normal file
View file

@ -0,0 +1,230 @@
/**
* @file shaders.hpp
* @brief SPIR-V shader compilation and caching system.
*
* This file provides functionality for compiling GLSL shaders to SPIR-V and
* managing a shader cache system. It supports automatic recompilation when
* source files are modified and efficient caching of compiled shaders.
*/
#pragma once
#include <filesystem>
#include <fmt/format.h>
#include <fstream>
#include <ios>
#include <shaderc/shaderc.hpp>
#include <string>
#include <vector>
#define VULKAN_HPP_NO_CONSTRUCTORS
#include <vulkan/vulkan.hpp>
#include "../core/types.hpp"
namespace graphics {
/**
* @brief Handles shader compilation and caching operations.
*
* This class provides static methods for compiling GLSL shaders to SPIR-V
* and managing a cache system. It automatically detects when shaders need
* to be recompiled based on file timestamps and provides efficient caching
* of compiled shader binaries.
*/
class ShaderCompiler {
public:
ShaderCompiler() = default;
/**
* @brief Compiles or retrieves a cached SPIR-V shader.
*
* @param shaderPath Path to the GLSL shader source file
* @param kind Type of shader (vertex, fragment, compute, etc.)
* @return std::vector<u32> Compiled SPIR-V binary code
* @throws std::runtime_error If shader compilation fails or file is not found
*
* This function performs the following steps:
* 1. Checks if a cached version exists and is up-to-date
* 2. Loads from cache if available and valid
* 3. Otherwise, compiles the shader from source
* 4. Caches the newly compiled shader for future use
* 5. Returns the SPIR-V binary code
*/
static fn getCompiledShader(const std::filesystem::path& shaderPath, const shaderc_shader_kind& kind)
-> std::vector<u32> {
using namespace std;
// Convert to absolute path if relative
filesystem::path absPath = filesystem::absolute(shaderPath);
if (!filesystem::exists(absPath))
throw runtime_error("Shader file not found: " + absPath.string());
const string shaderName = absPath.stem().string();
const filesystem::path cacheFile = getCacheFilePath(shaderName);
// Check if we need to recompile by comparing timestamps
if (filesystem::exists(cacheFile)) {
const auto sourceTime = filesystem::last_write_time(absPath);
const auto cacheTime = filesystem::last_write_time(cacheFile);
if (cacheTime >= sourceTime) {
// Cache is up to date, load it
vector<u32> spirvCode = loadCachedShader(cacheFile);
if (!spirvCode.empty()) {
fmt::println("Loaded shader from cache: {}", cacheFile.string());
return spirvCode;
}
}
}
// Need to compile the shader
fmt::println("Compiling shader: {}", absPath.string());
// Read shader source
ifstream file(absPath);
if (!file)
throw runtime_error("Failed to open shader file: " + absPath.string());
string shaderSource((istreambuf_iterator<char>(file)), istreambuf_iterator<char>());
file.close();
// Compile the shader
vector<u32> spirvCode = compileShader(shaderSource.c_str(), kind);
if (spirvCode.empty())
throw runtime_error("Shader compilation failed for: " + absPath.string());
// Cache the compiled SPIR-V binary
saveCompiledShader(spirvCode, cacheFile.string());
return spirvCode;
}
/**
* @brief Creates a shader module from SPIR-V code.
*
* @param device Logical device to create the shader module on
* @param code SPIR-V binary code
* @return vk::UniqueShaderModule Unique handle to the created shader module
*/
static fn createShaderModule(const vk::Device& device, const std::vector<u32>& code)
-> vk::UniqueShaderModule {
vk::ShaderModuleCreateInfo createInfo { .codeSize = code.size() * sizeof(u32), .pCode = code.data() };
return device.createShaderModuleUnique(createInfo);
}
private:
/**
* @brief Determines the platform-specific shader cache directory.
*
* @param shaderName Base name of the shader file
* @return std::filesystem::path Full path to the cache file
*
* Cache locations:
* - Windows: %LOCALAPPDATA%/VulkanApp/Shaders/
* - macOS: ~/Library/Application Support/VulkanApp/Shaders/
* - Linux: ~/.local/share/VulkanApp/Shaders/
*
* The directory is created if it doesn't exist.
*/
static fn getCacheFilePath(const string& shaderName) -> std::filesystem::path {
using namespace std::filesystem;
#ifdef _WIN32
path cacheDir = path(getenv("LOCALAPPDATA")) / "VulkanApp" / "Shaders";
#elif defined(__APPLE__)
path cacheDir = path(getenv("HOME")) / "Library" / "Application Support" / "VulkanApp" / "Shaders";
#else // Assume Linux or other UNIX-like systems
path cacheDir = path(getenv("HOME")) / ".local" / "share" / "VulkanApp" / "Shaders";
#endif
if (!exists(cacheDir))
create_directories(cacheDir);
return cacheDir / (shaderName + ".spv");
}
/**
* @brief Loads a cached SPIR-V shader from disk.
*
* @param cachePath Path to the cached shader file
* @return std::vector<u32> SPIR-V binary code, empty if loading fails
*
* Reads the binary SPIR-V data from the cache file. Returns an empty
* vector if the file cannot be opened or read properly.
*/
static fn loadCachedShader(const std::filesystem::path& cachePath) -> std::vector<u32> {
std::ifstream file(cachePath, std::ios::binary);
if (!file.is_open())
return {};
// Read file size
file.seekg(0, std::ios::end);
const std::streamoff fileSize = file.tellg();
file.seekg(0, std::ios::beg);
// Allocate buffer and read data
std::vector<u32> buffer(static_cast<u32>(fileSize) / sizeof(u32));
file.read(std::bit_cast<char*>(buffer.data()), fileSize);
return buffer;
}
/**
* @brief Compiles GLSL source code to SPIR-V.
*
* @param source GLSL shader source code
* @param kind Type of shader being compiled
* @return std::vector<u32> Compiled SPIR-V binary code
*
* Uses the shaderc library to compile GLSL to SPIR-V. The compilation
* is performed with optimization level set to performance and generates
* debug information in debug builds.
*/
static fn compileShader(const char* source, shaderc_shader_kind kind) -> std::vector<u32> {
shaderc::Compiler compiler;
shaderc::CompileOptions options;
// Set compilation options
#ifdef NDEBUG
options.SetOptimizationLevel(shaderc_optimization_level_performance);
#else
options.SetOptimizationLevel(shaderc_optimization_level_zero);
options.SetGenerateDebugInfo();
#endif
// Compile the shader
shaderc::SpvCompilationResult module = compiler.CompileGlslToSpv(source, kind, "shader", options);
if (module.GetCompilationStatus() != shaderc_compilation_status_success)
return {};
return { module.cbegin(), module.cend() };
}
/**
* @brief Saves compiled SPIR-V code to the cache.
*
* @param spirv Compiled SPIR-V binary code
* @param cachePath Path where the cache file should be saved
* @return bool True if save was successful, false otherwise
*
* Writes the SPIR-V binary to disk for future use. Creates any
* necessary parent directories if they don't exist.
*/
static fn saveCompiledShader(const std::vector<u32>& spirv, const std::string& cachePath) -> bool {
std::ofstream file(cachePath, std::ios::binary);
if (!file.is_open())
return false;
file.write(
std::bit_cast<const char*>(spirv.data()), static_cast<std::streamsize>(spirv.size() * sizeof(u32))
);
return file.good();
}
}; // class ShaderCompiler
} // namespace graphics

View file

@ -0,0 +1,14 @@
#pragma once
#include <glm/glm.hpp>
/**
* @brief Struct representing a uniform buffer object.
*
* This struct holds the model, view, and projection matrices for use in shaders.
*/
struct UniformBufferObject {
alignas(16) glm::mat4 model; ///< Model transformation matrix
alignas(16) glm::mat4 view; ///< View transformation matrix
alignas(16) glm::mat4 proj; ///< Projection matrix
};

View file

@ -8,11 +8,12 @@
*/ */
#include <filesystem> #include <filesystem>
#include <fmt/format.h>
#define STB_IMAGE_IMPLEMENTATION #define STB_IMAGE_IMPLEMENTATION
#include <stb_image.h> #include <stb_image.h>
#include "types.hpp" #include "../core/types.hpp"
namespace stb { namespace stb {
/** /**
@ -36,8 +37,8 @@ namespace stb {
UniqueImage(const std::filesystem::path& path) { load(path.string().c_str()); } UniqueImage(const std::filesystem::path& path) { load(path.string().c_str()); }
// Prevent copying to maintain single ownership // Prevent copying to maintain single ownership
UniqueImage(const UniqueImage&) = delete; UniqueImage(const UniqueImage&) = delete;
fn operator=(const UniqueImage&) -> UniqueImage& = delete; fn operator=(const UniqueImage&)->UniqueImage& = delete;
/** /**
* @brief Move constructor for transferring image ownership. * @brief Move constructor for transferring image ownership.

View file

@ -15,7 +15,7 @@
#define VULKAN_HPP_NO_CONSTRUCTORS #define VULKAN_HPP_NO_CONSTRUCTORS
#include <vulkan/vulkan.hpp> #include <vulkan/vulkan.hpp>
#include "types.hpp" #include "../core/types.hpp"
/** /**
* @brief Represents a vertex in 3D space with color and texture information. * @brief Represents a vertex in 3D space with color and texture information.
@ -46,7 +46,8 @@ struct Vertex {
/** /**
* @brief Provides attribute descriptions for vertex data interpretation. * @brief Provides attribute descriptions for vertex data interpretation.
* *
* @return std::array<vk::VertexInputAttributeDescription, 3> Array of descriptions for position, color, and texture coordinates. * @return std::array<vk::VertexInputAttributeDescription, 3> Array of descriptions for position, color, and
* texture coordinates.
* *
* The attribute descriptions specify: * The attribute descriptions specify:
* - Location indices (0 for position, 1 for color, 2 for texture coordinates) * - Location indices (0 for position, 1 for color, 2 for texture coordinates)
@ -56,9 +57,9 @@ struct Vertex {
*/ */
static fn getAttributeDescriptions() -> std::array<vk::VertexInputAttributeDescription, 3> { static fn getAttributeDescriptions() -> std::array<vk::VertexInputAttributeDescription, 3> {
return { return {
vk::VertexInputAttributeDescription { 0, 0, vk::Format::eR32G32B32Sfloat, offsetof(Vertex, pos) }, vk::VertexInputAttributeDescription { 0, 0, vk::Format::eR32G32B32Sfloat, offsetof(Vertex, pos) },
vk::VertexInputAttributeDescription { 1, 0, vk::Format::eR32G32B32Sfloat, offsetof(Vertex, color) }, vk::VertexInputAttributeDescription { 1, 0, vk::Format::eR32G32B32Sfloat, offsetof(Vertex, color) },
vk::VertexInputAttributeDescription { 2, 0, vk::Format::eR32G32Sfloat, offsetof(Vertex, tex_coord) } vk::VertexInputAttributeDescription { 2, 0, vk::Format::eR32G32Sfloat, offsetof(Vertex, tex_coord) }
}; };
} }
@ -68,7 +69,7 @@ struct Vertex {
* @param other The vertex to compare with. * @param other The vertex to compare with.
* @return bool True if vertices are identical in position, color, and texture coordinates. * @return bool True if vertices are identical in position, color, and texture coordinates.
*/ */
fn operator==(const Vertex& other) const -> bool { fn operator==(const Vertex& other) const->bool {
return pos == other.pos && color == other.color && tex_coord == other.tex_coord; return pos == other.pos && color == other.color && tex_coord == other.tex_coord;
} }
}; };
@ -89,7 +90,7 @@ namespace std {
* @param vertex The vertex to hash. * @param vertex The vertex to hash.
* @return size_t Hash value combining all vertex attributes. * @return size_t Hash value combining all vertex attributes.
*/ */
fn operator()(Vertex const& vertex) const -> size_t { fn operator()(Vertex const& vertex) const->size_t {
return ((hash<vec3>()(vertex.pos) ^ (hash<vec3>()(vertex.color) << 1)) >> 1) ^ return ((hash<vec3>()(vertex.pos) ^ (hash<vec3>()(vertex.color) << 1)) >> 1) ^
(hash<vec2>()(vertex.tex_coord) << 1); (hash<vec2>()(vertex.tex_coord) << 1);
} }

View file

@ -22,12 +22,6 @@
// Necessary for dynamic dispatch to work // Necessary for dynamic dispatch to work
VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE
// Include custom utility headers
#include "util/shaders.hpp" // Compiled shader code
#include "util/types.hpp" // Custom type definitions
#include "util/unique_image.hpp" // Custom image handling utilities
#include "util/vertex.hpp" // Custom vertex structure definition
// ImGui headers for GUI // ImGui headers for GUI
#include <imgui.h> #include <imgui.h>
#include <imgui_impl_glfw.h> #include <imgui_impl_glfw.h>
@ -37,32 +31,21 @@ VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE
#define VKFW_NO_STRUCT_CONSTRUCTORS // Use aggregate initialization for GLFW structs #define VKFW_NO_STRUCT_CONSTRUCTORS // Use aggregate initialization for GLFW structs
#include "vkfw.hpp" // Include GLFW C++ bindings #include "vkfw.hpp" // Include GLFW C++ bindings
// Constants for window dimensions // Include custom utility headers
constexpr i32 WIDTH = 1920; #include "config/config.hpp" // Configuration constants
constexpr i32 HEIGHT = 1080; #include "core/device_utils.hpp" // Device-related utilities
#include "core/queue_structures.hpp" // Queue-related structures
#include "core/types.hpp" // Custom type definitions
#include "graphics/camera.hpp" // Camera implementation
#include "graphics/image_utils.hpp" // Image-related utilities
#include "graphics/shaders.hpp" // Custom shader code
#include "graphics/uniform_buffer.hpp" // Uniform buffer object
#include "graphics/unique_image.hpp" // Custom image handling utilities
#include "graphics/vertex.hpp" // Custom vertex structure definition
// CAMERA_SPEED of camera movement using namespace config; // For easy access to configuration constants
constexpr f64 CAMERA_SPEED = 1.0; using namespace core; // For core utilities
using namespace graphics; // For graphics utilities
// Maximum number of frames that can be processed concurrently
constexpr i32 MAX_FRAMES_IN_FLIGHT = 2;
// Shader file paths
constexpr const char* VERTEX_SHADER_PATH = "shaders/vertex.glsl";
constexpr const char* FRAGMENT_SHADER_PATH = "shaders/fragment.glsl";
// Validation layers for debug builds
#ifndef NDEBUG
constexpr std::array<const char*, 1> validationLayers = { "VK_LAYER_KHRONOS_validation" };
#endif
// Required device extensions (platform-specific)
#ifdef __APPLE__
constexpr std::array<const char*, 2> deviceExtensions = { vk::KHRSwapchainExtensionName,
vk::KHRPortabilitySubsetExtensionName };
#else
constexpr std::array<const char*, 1> deviceExtensions = { vk::KHRSwapchainExtensionName };
#endif
/** /**
* @brief The Vulkan application class. * @brief The Vulkan application class.
@ -182,154 +165,7 @@ class VulkanApp {
f32 mFieldOfView = 90.0F; ///< Current field of view f32 mFieldOfView = 90.0F; ///< Current field of view
bool mWireframeMode = false; ///< Wireframe rendering mode bool mWireframeMode = false; ///< Wireframe rendering mode
/** Camera mCamera; ///< Camera object for the scene
* @brief Struct to store queue family indices.
*
* This struct contains the indices of the graphics and presentation queue families.
*/
struct QueueFamilyIndices {
std::optional<u32> graphics_family; ///< Index of graphics queue family
std::optional<u32> present_family; ///< Index of presentation queue family
/**
* @brief Check if all required queue families are found.
*
* @return True if both graphics and presentation families are found, false otherwise.
*/
fn isComplete() -> bool { return graphics_family.has_value() && present_family.has_value(); }
};
/**
* @brief Struct to hold swap chain support details.
*
* This struct contains information about the surface capabilities,
* supported formats, and presentation modes.
*/
struct SwapChainSupportDetails {
vk::SurfaceCapabilitiesKHR capabilities; ///< Surface capabilities
std::vector<vk::SurfaceFormatKHR> formats; ///< Supported surface formats
std::vector<vk::PresentModeKHR> present_modes; ///< Supported presentation modes
};
/**
* @brief Struct representing a uniform buffer object.
*
* This struct holds the model, view, and projection matrices for use in shaders.
*/
struct UniformBufferObject {
alignas(16) glm::mat4 model; ///< Model transformation matrix
alignas(16) glm::mat4 view; ///< View transformation matrix
alignas(16) glm::mat4 proj; ///< Projection matrix
};
struct Camera {
glm::dvec3 position;
glm::dvec3 front;
glm::dvec3 up;
glm::dvec3 right;
f64 yaw;
f64 pitch;
Camera()
: position(2.0, 2.0, 2.0),
front(glm::normalize(glm::dvec3(-2.0, -2.0, -2.0))),
up(0.0, 0.0, 1.0),
right(glm::normalize(glm::cross(front, up))),
yaw(-135.0) // -135 degrees to match the initial front vector
,
pitch(-35.26) // -35.26 degrees to match the initial front vector
{
updateCameraVectors();
}
[[nodiscard]] fn getPosition() const -> glm::dvec3 { return position; }
[[nodiscard]] fn getViewMatrix() const -> glm::mat4 {
return glm::lookAt(position, position + front, up);
}
fn moveForward(f64 deltaTime) -> void {
// Project front vector onto horizontal plane by zeroing Z component
glm::dvec3 horizontalFront = front;
horizontalFront.z = 0.0;
horizontalFront = glm::normalize(horizontalFront);
position += horizontalFront * CAMERA_SPEED * deltaTime;
}
fn moveBackward(f64 deltaTime) -> void {
// Project front vector onto horizontal plane by zeroing Z component
glm::dvec3 horizontalFront = front;
horizontalFront.z = 0.0;
horizontalFront = glm::normalize(horizontalFront);
position -= horizontalFront * CAMERA_SPEED * deltaTime;
}
fn moveLeft(f64 deltaTime) -> void {
// Project right vector onto horizontal plane by zeroing Z component
glm::dvec3 horizontalRight = right;
horizontalRight.z = 0.0;
horizontalRight = glm::normalize(horizontalRight);
position -= horizontalRight * CAMERA_SPEED * deltaTime;
}
fn moveRight(f64 deltaTime) -> void {
// Project right vector onto horizontal plane by zeroing Z component
glm::dvec3 horizontalRight = right;
horizontalRight.z = 0.0;
horizontalRight = glm::normalize(horizontalRight);
position += horizontalRight * CAMERA_SPEED * deltaTime;
}
fn moveUp(f64 deltaTime) -> void { position += glm::dvec3(0.0, 0.0, 1.0) * CAMERA_SPEED * deltaTime; }
fn moveDown(f64 deltaTime) -> void { position -= glm::dvec3(0.0, 0.0, 1.0) * CAMERA_SPEED * deltaTime; }
fn rotate(f64 xoffset, f64 yoffset) -> void {
const f64 sensitivity = 0.1;
yaw += xoffset * sensitivity;
pitch += yoffset * sensitivity;
// Constrain pitch to avoid camera flipping
if (pitch > 89.0)
pitch = 89.0;
if (pitch < -89.0)
pitch = -89.0;
updateCameraVectors();
}
private:
fn updateCameraVectors() -> void {
// Calculate new front vector
glm::dvec3 newFront;
newFront.x = cos(glm::radians(yaw)) * cos(glm::radians(pitch));
newFront.y = sin(glm::radians(yaw)) * cos(glm::radians(pitch));
newFront.z = sin(glm::radians(pitch));
front = glm::normalize(newFront);
// Recalculate right and up vectors
right = glm::normalize(glm::cross(front, glm::dvec3(0.0, 0.0, 1.0)));
up = glm::normalize(glm::cross(right, front));
}
};
Camera mCamera; ///< Camera object
static fn processInput(vkfw::Window& window, Camera& camera, const f32& deltaTime, const f32& cameraSpeed)
-> void {
if (window.getKey(vkfw::Key::eW) == vkfw::eTrue)
camera.moveForward(static_cast<f64>(deltaTime * cameraSpeed));
if (window.getKey(vkfw::Key::eA) == vkfw::eTrue)
camera.moveLeft(static_cast<f64>(deltaTime * cameraSpeed));
if (window.getKey(vkfw::Key::eS) == vkfw::eTrue)
camera.moveBackward(static_cast<f64>(deltaTime * cameraSpeed));
if (window.getKey(vkfw::Key::eD) == vkfw::eTrue)
camera.moveRight(static_cast<f64>(deltaTime * cameraSpeed));
if (window.getKey(vkfw::Key::eSpace) == vkfw::eTrue)
camera.moveUp(static_cast<f64>(deltaTime * cameraSpeed));
if (window.getKey(vkfw::Key::eLeftShift) == vkfw::eTrue)
camera.moveDown(static_cast<f64>(deltaTime * cameraSpeed));
}
/** /**
* @brief Initializes the application window using GLFW. * @brief Initializes the application window using GLFW.
@ -459,17 +295,23 @@ class VulkanApp {
createDepthResources(); // Create resources for depth testing createDepthResources(); // Create resources for depth testing
createFramebuffers(); // Create framebuffers for rendering createFramebuffers(); // Create framebuffers for rendering
createTextureImage(); // Load and create the texture image createTextureImage(); // Load and create the texture image
createTextureImageView(); // Create an image view for the texture mTextureImageView = graphics::createImageView(
createTextureSampler(); // Create a sampler for the texture mDevice.get(),
loadModel(); // Load the 3D model mTextureImage.get(),
createVertexBuffer(); // Create a buffer for vertex data vk::Format::eR8G8B8A8Srgb,
createIndexBuffer(); // Create a buffer for index data vk::ImageAspectFlagBits::eColor,
createUniformBuffers(); // Create uniform buffers for shader parameters mMipLevels
createDescriptorPool(); // Create a descriptor pool );
createDescriptorSets(); // Allocate and update descriptor sets createTextureSampler(); // Create a sampler for the texture
createCommandBuffers(); // Create command buffers for rendering commands loadModel(); // Load the 3D model
createSyncObjects(); // Create synchronization objects (semaphores and fences) createVertexBuffer(); // Create a buffer for vertex data
initImGui(); // Initialize Dear ImGui for GUI rendering createIndexBuffer(); // Create a buffer for index data
createUniformBuffers(); // Create uniform buffers for shader parameters
createDescriptorPool(); // Create a descriptor pool
createDescriptorSets(); // Allocate and update descriptor sets
createCommandBuffers(); // Create command buffers for rendering commands
createSyncObjects(); // Create synchronization objects (semaphores and fences)
initImGui(); // Initialize Dear ImGui for GUI rendering
} }
/** /**
@ -512,10 +354,11 @@ class VulkanApp {
mImGuiDescriptorPool = mDevice->createDescriptorPoolUnique(poolInfo); mImGuiDescriptorPool = mDevice->createDescriptorPoolUnique(poolInfo);
ImGui_ImplVulkan_InitInfo initInfo = { ImGui_ImplVulkan_InitInfo initInfo = {
.Instance = mInstance.get(), .Instance = mInstance.get(),
.PhysicalDevice = mPhysicalDevice, .PhysicalDevice = mPhysicalDevice,
.Device = mDevice.get(), .Device = mDevice.get(),
.QueueFamily = findQueueFamilies(mPhysicalDevice).graphics_family.value(), .QueueFamily =
QueueFamilyIndices::findQueueFamilies(mPhysicalDevice, mSurface.get()).graphics_family.value(),
.Queue = mGraphicsQueue, .Queue = mGraphicsQueue,
.DescriptorPool = mImGuiDescriptorPool.get(), .DescriptorPool = mImGuiDescriptorPool.get(),
.RenderPass = mRenderPass.get(), .RenderPass = mRenderPass.get(),
@ -551,7 +394,7 @@ class VulkanApp {
deltaTime = currentFrame - lastFrame; deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame; lastFrame = currentFrame;
processInput(mWindow.get(), mCamera, static_cast<f32>(deltaTime), mCameraSpeed); Camera::processInput(mWindow.get(), mCamera, static_cast<f32>(deltaTime), mCameraSpeed);
mView = mCamera.getViewMatrix(); mView = mCamera.getViewMatrix();
if (currentFrame - lastFpsUpdate > 1.0) { if (currentFrame - lastFpsUpdate > 1.0) {
@ -741,9 +584,9 @@ class VulkanApp {
#endif #endif
// Set the first suitable device as the physical device // Set the first suitable device as the physical device
if (isDeviceSuitable(device)) { if (isDeviceSuitable(device, mSurface.get())) {
mPhysicalDevice = device; mPhysicalDevice = device;
mMsaaSamples = getMaxUsableSampleCount(); mMsaaSamples = getMaxUsableSampleCount(device);
break; break;
} }
} }
@ -761,7 +604,7 @@ class VulkanApp {
*/ */
fn createLogicalDevice() -> void { fn createLogicalDevice() -> void {
// Get the queue families // Get the queue families
QueueFamilyIndices qfIndices = findQueueFamilies(mPhysicalDevice); QueueFamilyIndices qfIndices = QueueFamilyIndices::findQueueFamilies(mPhysicalDevice, mSurface.get());
std::vector<vk::DeviceQueueCreateInfo> queueCreateInfos; std::vector<vk::DeviceQueueCreateInfo> queueCreateInfos;
@ -813,11 +656,15 @@ class VulkanApp {
* It determines the format, presentation mode, and extent of the swap chain images. * It determines the format, presentation mode, and extent of the swap chain images.
*/ */
fn createSwapChain() -> void { fn createSwapChain() -> void {
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(mPhysicalDevice); SwapChainSupportDetails swapChainSupport =
SwapChainSupportDetails::querySwapChainSupport(mPhysicalDevice, mSurface.get());
vk::SurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats); vk::SurfaceFormatKHR surfaceFormat =
vk::PresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.present_modes); SwapChainSupportDetails::chooseSwapSurfaceFormat(swapChainSupport.formats);
vk::Extent2D extent = chooseSwapExtent(swapChainSupport.capabilities); vk::PresentModeKHR presentMode =
SwapChainSupportDetails::chooseSwapPresentMode(swapChainSupport.present_modes);
vk::Extent2D extent =
SwapChainSupportDetails::chooseSwapExtent(swapChainSupport.capabilities, WIDTH, HEIGHT);
u32 imageCount = swapChainSupport.capabilities.minImageCount + 1; u32 imageCount = swapChainSupport.capabilities.minImageCount + 1;
@ -825,7 +672,7 @@ class VulkanApp {
imageCount > swapChainSupport.capabilities.maxImageCount) imageCount > swapChainSupport.capabilities.maxImageCount)
imageCount = swapChainSupport.capabilities.maxImageCount; imageCount = swapChainSupport.capabilities.maxImageCount;
QueueFamilyIndices qfIndices = findQueueFamilies(mPhysicalDevice); QueueFamilyIndices qfIndices = QueueFamilyIndices::findQueueFamilies(mPhysicalDevice, mSurface.get());
std::array<u32, 2> queueFamilyIndices = { std::array<u32, 2> queueFamilyIndices = {
qfIndices.graphics_family.value(), qfIndices.graphics_family.value(),
qfIndices.present_family.value(), qfIndices.present_family.value(),
@ -869,8 +716,9 @@ class VulkanApp {
mSwapChainImageViews.resize(mSwapChainImages.size()); mSwapChainImageViews.resize(mSwapChainImages.size());
for (u32 i = 0; i < mSwapChainImages.size(); i++) for (u32 i = 0; i < mSwapChainImages.size(); i++)
mSwapChainImageViews[i] = mSwapChainImageViews[i] = createImageView(
createImageView(mSwapChainImages[i], mSwapChainImageFormat, vk::ImageAspectFlagBits::eColor, 1); mDevice.get(), mSwapChainImages[i], mSwapChainImageFormat, vk::ImageAspectFlagBits::eColor, 1
);
} }
/** /**
@ -1008,12 +856,14 @@ class VulkanApp {
*/ */
fn createGraphicsPipeline() -> void { fn createGraphicsPipeline() -> void {
std::vector<u32> vertShaderCode = std::vector<u32> vertShaderCode =
ShaderCompiler::getCompiledShader(VERTEX_SHADER_PATH, shaderc_shader_kind::shaderc_vertex_shader); ShaderCompiler::getCompiledShader(VERTEX_SHADER_PATH, shaderc_vertex_shader);
std::vector<u32> fragShaderCode = std::vector<u32> fragShaderCode =
ShaderCompiler::getCompiledShader(FRAGMENT_SHADER_PATH, shaderc_shader_kind::shaderc_fragment_shader); ShaderCompiler::getCompiledShader(FRAGMENT_SHADER_PATH, shaderc_fragment_shader);
vk::UniqueShaderModule vertShaderModule = createShaderModule(vertShaderCode); vk::UniqueShaderModule vertShaderModule =
vk::UniqueShaderModule fragShaderModule = createShaderModule(fragShaderCode); ShaderCompiler::createShaderModule(mDevice.get(), vertShaderCode);
vk::UniqueShaderModule fragShaderModule =
ShaderCompiler::createShaderModule(mDevice.get(), fragShaderCode);
vk::PipelineShaderStageCreateInfo vertShaderStageInfo { vk::PipelineShaderStageCreateInfo vertShaderStageInfo {
.stage = vk::ShaderStageFlagBits::eVertex, .stage = vk::ShaderStageFlagBits::eVertex,
@ -1164,7 +1014,8 @@ class VulkanApp {
* the buffers from which command buffer memory is allocated. * the buffers from which command buffer memory is allocated.
*/ */
fn createCommandPool() -> void { fn createCommandPool() -> void {
QueueFamilyIndices queueFamilyIndices = findQueueFamilies(mPhysicalDevice); QueueFamilyIndices queueFamilyIndices =
QueueFamilyIndices::findQueueFamilies(mPhysicalDevice, mSurface.get());
vk::CommandPoolCreateInfo poolInfo { .flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer, vk::CommandPoolCreateInfo poolInfo { .flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer,
.queueFamilyIndex = queueFamilyIndices.graphics_family.value() }; .queueFamilyIndex = queueFamilyIndices.graphics_family.value() };
@ -1181,6 +1032,8 @@ class VulkanApp {
vk::Format colorFormat = mSwapChainImageFormat; vk::Format colorFormat = mSwapChainImageFormat;
std::tie(mColorImage, mColorImageMemory) = createImage( std::tie(mColorImage, mColorImageMemory) = createImage(
mDevice.get(),
mPhysicalDevice,
mSwapChainExtent.width, mSwapChainExtent.width,
mSwapChainExtent.height, mSwapChainExtent.height,
1, 1,
@ -1191,7 +1044,8 @@ class VulkanApp {
vk::MemoryPropertyFlagBits::eDeviceLocal vk::MemoryPropertyFlagBits::eDeviceLocal
); );
mColorImageView = createImageView(mColorImage.get(), colorFormat, vk::ImageAspectFlagBits::eColor, 1); mColorImageView =
createImageView(mDevice.get(), mColorImage.get(), colorFormat, vk::ImageAspectFlagBits::eColor, 1);
} }
/** /**
@ -1203,6 +1057,8 @@ class VulkanApp {
vk::Format depthFormat = findDepthFormat(); vk::Format depthFormat = findDepthFormat();
std::tie(mDepthImage, mDepthImageMemory) = createImage( std::tie(mDepthImage, mDepthImageMemory) = createImage(
mDevice.get(),
mPhysicalDevice,
mSwapChainExtent.width, mSwapChainExtent.width,
mSwapChainExtent.height, mSwapChainExtent.height,
1, 1,
@ -1213,7 +1069,8 @@ class VulkanApp {
vk::MemoryPropertyFlagBits::eDeviceLocal vk::MemoryPropertyFlagBits::eDeviceLocal
); );
mDepthImageView = createImageView(mDepthImage.get(), depthFormat, vk::ImageAspectFlagBits::eDepth, 1); mDepthImageView =
createImageView(mDevice.get(), mDepthImage.get(), depthFormat, vk::ImageAspectFlagBits::eDepth, 1);
} }
/** /**
@ -1304,6 +1161,8 @@ class VulkanApp {
copyData(stagingBufferMemory.get(), imageSize, pixels); copyData(stagingBufferMemory.get(), imageSize, pixels);
std::tie(mTextureImage, mTextureImageMemory) = createImage( std::tie(mTextureImage, mTextureImageMemory) = createImage(
mDevice.get(),
mPhysicalDevice,
static_cast<u32>(texWidth), static_cast<u32>(texWidth),
static_cast<u32>(texHeight), static_cast<u32>(texHeight),
mMipLevels, mMipLevels,
@ -1316,11 +1175,23 @@ class VulkanApp {
); );
transitionImageLayout( transitionImageLayout(
mTextureImage.get(), vk::ImageLayout::eUndefined, vk::ImageLayout::eTransferDstOptimal, mMipLevels mDevice.get(),
mCommandPool.get(),
mGraphicsQueue,
mTextureImage.get(),
vk::ImageLayout::eUndefined,
vk::ImageLayout::eTransferDstOptimal,
mMipLevels
); );
copyBufferToImage( copyBufferToImage(
stagingBuffer.get(), mTextureImage.get(), static_cast<u32>(texWidth), static_cast<u32>(texHeight) mDevice.get(),
mCommandPool.get(),
mGraphicsQueue,
stagingBuffer.get(),
mTextureImage.get(),
static_cast<u32>(texWidth),
static_cast<u32>(texHeight)
); );
generateMipmaps(mTextureImage.get(), vk::Format::eR8G8B8A8Srgb, texWidth, texHeight, mMipLevels); generateMipmaps(mTextureImage.get(), vk::Format::eR8G8B8A8Srgb, texWidth, texHeight, mMipLevels);
@ -1450,47 +1321,13 @@ class VulkanApp {
endSingleTimeCommands(commandBuffer); endSingleTimeCommands(commandBuffer);
} }
/**
* @brief Gets the maximum usable sample count for multisampling.
*
* @return The maximum sample count supported by the device for both color and depth.
*
* This function determines the highest sample count that is supported by the device
* for both color and depth attachments.
*/
fn getMaxUsableSampleCount() -> vk::SampleCountFlagBits {
vk::PhysicalDeviceProperties physicalDeviceProperties = mPhysicalDevice.getProperties();
vk::SampleCountFlags counts = physicalDeviceProperties.limits.framebufferColorSampleCounts &
physicalDeviceProperties.limits.framebufferDepthSampleCounts;
// Define an array of sample counts in descending order
const std::array<vk::SampleCountFlagBits, 7> sampleCounts = {
vk::SampleCountFlagBits::e64, vk::SampleCountFlagBits::e32, vk::SampleCountFlagBits::e16,
vk::SampleCountFlagBits::e8, vk::SampleCountFlagBits::e4, vk::SampleCountFlagBits::e2,
vk::SampleCountFlagBits::e1,
};
// Loop through the array and return the first supported sample count
for (const vk::SampleCountFlagBits& count : sampleCounts)
if (counts & count)
return count;
// Return e1 if no other sample count is supported
return vk::SampleCountFlagBits::e1;
}
/** /**
* @brief Creates the texture image view. * @brief Creates the texture image view.
* *
* This function creates an image view for the texture image, which can be used * This function creates an image view for the texture image, which can be used
* to access the texture in shaders. * to access the texture in shaders.
*/ */
fn createTextureImageView() -> void { fn createTextureImageView() -> void {}
mTextureImageView = createImageView(
mTextureImage.get(), vk::Format::eR8G8B8A8Srgb, vk::ImageAspectFlagBits::eColor, mMipLevels
);
}
/** /**
* @brief Creates the texture sampler. * @brief Creates the texture sampler.
@ -1521,167 +1358,6 @@ class VulkanApp {
mTextureSampler = mDevice->createSamplerUnique(samplerInfo); mTextureSampler = mDevice->createSamplerUnique(samplerInfo);
} }
/**
* @brief Creates a Vulkan image view.
*
* This function creates and returns a unique Vulkan image view using the provided parameters.
*
* @param image The Vulkan image for which to create the view.
* @param format The format of the image.
* @param aspectFlags The aspect flags for the image view.
* @param mipLevels The number of mip levels for the image view.
*
* @return vk::UniqueImageView A unique handle to the created Vulkan image view.
*
* @details
* The function creates an image view with the following properties:
* - 2D view type
* - Subresource range starting from base mip level 0
* - Single array layer starting from base array layer 0
*/
fn createImageView(
const vk::Image& image,
const vk::Format& format,
const vk::ImageAspectFlags& aspectFlags,
const u32& mipLevels
) -> vk::UniqueImageView {
return mDevice->createImageViewUnique({
.image = image,
.viewType = vk::ImageViewType::e2D,
.format = format,
.subresourceRange = {
.aspectMask = aspectFlags,
.baseMipLevel = 0,
.levelCount = mipLevels,
.baseArrayLayer = 0,
.layerCount = 1,
},
});
}
fn createImage(
const u32& width,
const u32& height,
const u32& mipLevels,
const vk::SampleCountFlagBits& numSamples,
const vk::Format& format,
const vk::ImageTiling& tiling,
const vk::ImageUsageFlags& usage,
const vk::MemoryPropertyFlags& properties
) -> std::pair<vk::UniqueImage, vk::UniqueDeviceMemory> {
// Define the image creation info
vk::ImageCreateInfo imageInfo {
.imageType = vk::ImageType::e2D,
.format = format,
.extent = { .width = width, .height = height, .depth = 1 },
.mipLevels = mipLevels,
.arrayLayers = 1,
.samples = numSamples,
.tiling = tiling,
.usage = usage,
.sharingMode = vk::SharingMode::eExclusive,
.initialLayout = vk::ImageLayout::eUndefined,
};
// Create the image
vk::UniqueImage image = mDevice->createImageUnique(imageInfo);
// Get the memory requirements for the image
vk::MemoryRequirements memRequirements = mDevice->getImageMemoryRequirements(image.get());
// Memory allocation info
vk::MemoryAllocateInfo allocInfo {
.allocationSize = memRequirements.size,
.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties),
};
// Allocate memory
vk::UniqueDeviceMemory imageMemory = mDevice->allocateMemoryUnique(allocInfo);
// Bind the allocated memory to the image
mDevice->bindImageMemory(image.get(), imageMemory.get(), 0);
// Return the unique image
return { std::move(image), std::move(imageMemory) };
}
// Transition image between layouts
fn transitionImageLayout(
const vk::Image& image,
const vk::ImageLayout& oldLayout,
const vk::ImageLayout& newLayout,
const u32& mipLevels
) -> void {
// Create a command buffer
vk::CommandBuffer commandBuffer = beginSingleTimeCommands();
// Define the image memory barrier
vk::ImageMemoryBarrier barrier {
.oldLayout = oldLayout,
.newLayout = newLayout,
.srcQueueFamilyIndex = vk::QueueFamilyIgnored,
.dstQueueFamilyIndex = vk::QueueFamilyIgnored,
.image = image,
.subresourceRange = {
.aspectMask = vk::ImageAspectFlagBits::eColor,
.baseMipLevel = 0,
.levelCount = mipLevels,
.baseArrayLayer = 0,
.layerCount = 1,
},
};
// Define the source and destination stages
vk::PipelineStageFlags sourceStage;
vk::PipelineStageFlags destinationStage;
// Define the access masks
if (oldLayout == vk::ImageLayout::eUndefined && newLayout == vk::ImageLayout::eTransferDstOptimal) {
barrier.srcAccessMask = {};
barrier.dstAccessMask = vk::AccessFlagBits::eTransferWrite;
sourceStage = vk::PipelineStageFlagBits::eTopOfPipe;
destinationStage = vk::PipelineStageFlagBits::eTransfer;
} else if (oldLayout == vk::ImageLayout::eTransferDstOptimal &&
newLayout == vk::ImageLayout::eShaderReadOnlyOptimal) {
barrier.srcAccessMask = vk::AccessFlagBits::eTransferWrite;
barrier.dstAccessMask = vk::AccessFlagBits::eShaderRead;
sourceStage = vk::PipelineStageFlagBits::eTransfer;
destinationStage = vk::PipelineStageFlagBits::eFragmentShader;
} else {
// Ensure that the layout transition is supported
throw std::invalid_argument("Unsupported layout transition!");
}
// Record the pipeline barrier
commandBuffer.pipelineBarrier(sourceStage, destinationStage, {}, {}, {}, barrier);
// End the command buffer
endSingleTimeCommands(commandBuffer);
}
fn copyBufferToImage(const vk::Buffer& buffer, const vk::Image& image, const u32& width, const u32& height)
-> void {
vk::CommandBuffer commandBuffer = beginSingleTimeCommands();
vk::BufferImageCopy region {
.bufferOffset = 0,
.bufferRowLength = 0,
.bufferImageHeight = 0,
.imageSubresource = { .aspectMask = vk::ImageAspectFlagBits::eColor,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1 },
.imageOffset = { .x = 0, .y = 0, .z = 0 },
.imageExtent = { .width = width, .height = height, .depth = 1 },
};
commandBuffer.copyBufferToImage(buffer, image, vk::ImageLayout::eTransferDstOptimal, 1, &region);
endSingleTimeCommands(commandBuffer);
}
/** /**
* @brief Loads the 3D model. * @brief Loads the 3D model.
* *
@ -2477,143 +2153,6 @@ class VulkanApp {
return vk::PresentModeKHR::eFifo; return vk::PresentModeKHR::eFifo;
} }
/**
* @brief Chooses the swap extent (resolution) for the swap chain.
*
* @param capabilities The surface capabilities of the device.
* @return The chosen swap extent.
*
* This function determines the resolution of the swap chain images,
* taking into account the current window size and device limitations.
*/
fn chooseSwapExtent(const vk::SurfaceCapabilitiesKHR& capabilities) -> vk::Extent2D {
// If the resolution is not UINT32_MAX, return it
// Otherwise, we need to set the resolution manually
if (capabilities.currentExtent.width != UINT32_MAX)
return capabilities.currentExtent;
// Get the window's resolution
u32 width = 0, height = 0;
std::tie(width, height) = mWindow->getFramebufferSize();
// Return the resolution clamped to the supported range
return {
.width = std::clamp(width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width),
.height = std::clamp(height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height),
};
}
/**
* @brief Queries the swap chain support details for a physical device.
*
* @param device The physical device to query.
* @return A SwapChainSupportDetails struct containing the support information.
*
* This function retrieves information about the swap chain support,
* including surface capabilities, formats, and presentation modes.
*/
fn querySwapChainSupport(const vk::PhysicalDevice& device) -> SwapChainSupportDetails {
return {
.capabilities = device.getSurfaceCapabilitiesKHR(mSurface.get()),
.formats = device.getSurfaceFormatsKHR(mSurface.get()),
.present_modes = device.getSurfacePresentModesKHR(mSurface.get()),
};
}
/**
* @brief Checks if a physical device is suitable for the application.
*
* @param device The physical device to check.
* @return True if the device is suitable, false otherwise.
*
* This function checks if a physical device meets all the requirements
* of the application, including queue families, extensions, and features.
*/
fn isDeviceSuitable(const vk::PhysicalDevice& device) -> bool {
// Get the queue families that support the required operations
QueueFamilyIndices qfIndices = findQueueFamilies(device);
// Check if the device supports the required extensions
bool extensionsSupported = checkDeviceExtensionSupport(device);
bool swapChainAdequate = false;
if (extensionsSupported) {
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
// Check if the swap chain is adequate (make sure it has
// at least one supported format and presentation mode)
swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.present_modes.empty();
}
// Check if the device supports the required features
vk::PhysicalDeviceFeatures supportedFeatures = device.getFeatures();
// If the device supports everything required, return true
return qfIndices.isComplete() && extensionsSupported && swapChainAdequate &&
supportedFeatures.samplerAnisotropy;
}
/**
* @brief Checks if a device supports all required extensions.
*
* @param device The physical device to check.
* @return True if all required extensions are supported, false otherwise.
*
* This function verifies that a physical device supports all the
* extensions required by the application.
*/
static fn checkDeviceExtensionSupport(const vk::PhysicalDevice& device) -> bool {
// Get the available extensions
std::vector<vk::ExtensionProperties> availableExtensions = device.enumerateDeviceExtensionProperties();
// Create a set of required extension names
std::set<string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());
// Remove each required extension from the set of available extensions
for (const vk::ExtensionProperties& extension : availableExtensions)
requiredExtensions.erase(extension.extensionName);
// If the set is empty, all required extensions are supported
return requiredExtensions.empty();
}
/**
* @brief Finds queue families that support required operations.
*
* @param device The physical device to check.
* @return A QueueFamilyIndices struct with the found queue family indices.
*
* This function finds queue families that support graphics operations
* and presentation to the window surface.
*/
fn findQueueFamilies(const vk::PhysicalDevice& device) -> QueueFamilyIndices {
// Create a struct to store the queue family indices
QueueFamilyIndices qfIndices;
// Get the queue family properties
std::vector<vk::QueueFamilyProperties> queueFamilies = device.getQueueFamilyProperties();
// For every queue family,
for (u32 i = 0; i < queueFamilies.size(); i++) {
// Check if the queue family supports the required operations
if (queueFamilies[i].queueFlags & vk::QueueFlagBits::eGraphics)
qfIndices.graphics_family = i;
// Check if the queue family supports presentation
vk::Bool32 queuePresentSupport = device.getSurfaceSupportKHR(i, mSurface.get());
// If the queue family supports presentation, set the present family index
if (queuePresentSupport)
qfIndices.present_family = i;
// If the queue family supports both operations, we're done
if (qfIndices.isComplete())
break;
}
return qfIndices;
}
/** /**
* @brief Checks if all requested validation layers are available. * @brief Checks if all requested validation layers are available.
* *

View file

@ -1,209 +0,0 @@
/**
* @file shaders.hpp
* @brief SPIR-V shader compilation and caching system.
*
* This file provides functionality for compiling GLSL shaders to SPIR-V and
* managing a shader cache system. It supports automatic recompilation when
* source files are modified and efficient caching of compiled shaders.
*/
#pragma once
#include <filesystem>
#include <fmt/format.h>
#include <fstream>
#include <ios>
#include <shaderc/shaderc.hpp>
#include <string>
#include <vector>
#include "types.hpp"
/**
* @brief Handles shader compilation and caching operations.
*
* This class provides static methods for compiling GLSL shaders to SPIR-V
* and managing a cache system. It automatically detects when shaders need
* to be recompiled based on file timestamps and provides efficient caching
* of compiled shader binaries.
*/
class ShaderCompiler {
public:
ShaderCompiler() = default;
/**
* @brief Compiles or retrieves a cached SPIR-V shader.
*
* @param shaderPath Path to the GLSL shader source file
* @param kind Type of shader (vertex, fragment, compute, etc.)
* @return std::vector<u32> Compiled SPIR-V binary code
* @throws std::runtime_error If shader compilation fails or file is not found
*
* This function performs the following steps:
* 1. Checks if a cached version exists and is up-to-date
* 2. Loads from cache if available and valid
* 3. Otherwise, compiles the shader from source
* 4. Caches the newly compiled shader for future use
* 5. Returns the SPIR-V binary code
*/
static fn getCompiledShader(const std::filesystem::path& shaderPath, const shaderc_shader_kind& kind)
-> std::vector<u32> {
using namespace std;
// Convert to absolute path if relative
filesystem::path absPath = filesystem::absolute(shaderPath);
if (!filesystem::exists(absPath))
throw runtime_error("Shader file not found: " + absPath.string());
const string shaderName = absPath.stem().string();
const filesystem::path cacheFile = getCacheFilePath(shaderName);
// Check if we need to recompile by comparing timestamps
if (filesystem::exists(cacheFile)) {
const auto sourceTime = filesystem::last_write_time(absPath);
const auto cacheTime = filesystem::last_write_time(cacheFile);
if (cacheTime >= sourceTime) {
// Cache is up to date, load it
vector<u32> spirvCode = loadCachedShader(cacheFile);
if (!spirvCode.empty()) {
fmt::println("Loaded shader from cache: {}", cacheFile.string());
return spirvCode;
}
}
}
// Need to compile the shader
fmt::println("Compiling shader: {}", absPath.string());
// Read shader source
ifstream file(absPath);
if (!file)
throw runtime_error("Failed to open shader file: " + absPath.string());
string shaderSource((istreambuf_iterator<char>(file)), istreambuf_iterator<char>());
file.close();
// Compile the shader
vector<u32> spirvCode = compileShader(shaderSource.c_str(), kind);
if (spirvCode.empty())
throw runtime_error("Shader compilation failed for: " + absPath.string());
// Cache the compiled SPIR-V binary
saveCompiledShader(spirvCode, cacheFile.string());
return spirvCode;
}
private:
/**
* @brief Determines the platform-specific shader cache directory.
*
* @param shaderName Base name of the shader file
* @return std::filesystem::path Full path to the cache file
*
* Cache locations:
* - Windows: %LOCALAPPDATA%/VulkanApp/Shaders/
* - macOS: ~/Library/Application Support/VulkanApp/Shaders/
* - Linux: ~/.local/share/VulkanApp/Shaders/
*
* The directory is created if it doesn't exist.
*/
static fn getCacheFilePath(const string& shaderName) -> std::filesystem::path {
using namespace std::filesystem;
#ifdef _WIN32
path cacheDir = path(getenv("LOCALAPPDATA")) / "VulkanApp" / "Shaders";
#elif defined(__APPLE__)
path cacheDir = path(getenv("HOME")) / "Library" / "Application Support" / "VulkanApp" / "Shaders";
#else // Assume Linux or other UNIX-like systems
path cacheDir = path(getenv("HOME")) / ".local" / "share" / "VulkanApp" / "Shaders";
#endif
if (!exists(cacheDir))
create_directories(cacheDir);
return cacheDir / (shaderName + ".spv");
}
/**
* @brief Loads a cached SPIR-V shader from disk.
*
* @param cachePath Path to the cached shader file
* @return std::vector<u32> SPIR-V binary code, empty if loading fails
*
* Reads the binary SPIR-V data from the cache file. Returns an empty
* vector if the file cannot be opened or read properly.
*/
static fn loadCachedShader(const std::filesystem::path& cachePath) -> std::vector<u32> {
std::ifstream file(cachePath, std::ios::binary);
if (!file.is_open())
return {};
// Read file size
file.seekg(0, std::ios::end);
const std::streamoff fileSize = file.tellg();
file.seekg(0, std::ios::beg);
// Allocate buffer and read data
std::vector<u32> buffer(static_cast<u32>(fileSize) / sizeof(u32));
file.read(std::bit_cast<char*>(buffer.data()), fileSize);
return buffer;
}
/**
* @brief Compiles GLSL source code to SPIR-V.
*
* @param source GLSL shader source code
* @param kind Type of shader being compiled
* @return std::vector<u32> Compiled SPIR-V binary code
*
* Uses the shaderc library to compile GLSL to SPIR-V. The compilation
* is performed with optimization level set to performance and generates
* debug information in debug builds.
*/
static fn compileShader(const char* source, shaderc_shader_kind kind) -> std::vector<u32> {
shaderc::Compiler compiler;
shaderc::CompileOptions options;
// Set compilation options
#ifdef NDEBUG
options.SetOptimizationLevel(shaderc_optimization_level_performance);
#else
options.SetOptimizationLevel(shaderc_optimization_level_zero);
options.SetGenerateDebugInfo();
#endif
// Compile the shader
shaderc::SpvCompilationResult module = compiler.CompileGlslToSpv(source, kind, "shader", options);
if (module.GetCompilationStatus() != shaderc_compilation_status_success)
return {};
return { module.cbegin(), module.cend() };
}
/**
* @brief Saves compiled SPIR-V code to the cache.
*
* @param spirv Compiled SPIR-V binary code
* @param cachePath Path where the cache file should be saved
* @return bool True if save was successful, false otherwise
*
* Writes the SPIR-V binary to disk for future use. Creates any
* necessary parent directories if they don't exist.
*/
static fn saveCompiledShader(const std::vector<u32>& spirv, const std::string& cachePath) -> bool {
std::ofstream file(cachePath, std::ios::binary);
if (!file.is_open())
return false;
file.write(
std::bit_cast<const char*>(spirv.data()), static_cast<std::streamsize>(spirv.size() * sizeof(u32))
);
return file.good();
}
};