4221 lines
153 KiB
C
4221 lines
153 KiB
C
|
/*
|
||
|
Formatting library for C++
|
||
|
|
||
|
Copyright (c) 2012 - present, Victor Zverovich
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining
|
||
|
a copy of this software and associated documentation files (the
|
||
|
"Software"), to deal in the Software without restriction, including
|
||
|
without limitation the rights to use, copy, modify, merge, publish,
|
||
|
distribute, sublicense, and/or sell copies of the Software, and to
|
||
|
permit persons to whom the Software is furnished to do so, subject to
|
||
|
the following conditions:
|
||
|
|
||
|
The above copyright notice and this permission notice shall be
|
||
|
included in all copies or substantial portions of the Software.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||
|
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
||
|
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||
|
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
|
||
|
--- Optional exception to the license ---
|
||
|
|
||
|
As an exception, if, as a result of your compiling your source code, portions
|
||
|
of this Software are embedded into a machine-executable object form of such
|
||
|
source code, you may redistribute such embedded portions in such object form
|
||
|
without including the above copyright and permission notices.
|
||
|
*/
|
||
|
|
||
|
#ifndef FMT_FORMAT_H_
|
||
|
#define FMT_FORMAT_H_
|
||
|
|
||
|
#ifndef _LIBCPP_REMOVE_TRANSITIVE_INCLUDES
|
||
|
# define _LIBCPP_REMOVE_TRANSITIVE_INCLUDES
|
||
|
# define FMT_REMOVE_TRANSITIVE_INCLUDES
|
||
|
#endif
|
||
|
|
||
|
#include "base.h"
|
||
|
|
||
|
#ifndef FMT_MODULE
|
||
|
# include <cmath> // std::signbit
|
||
|
# include <cstddef> // std::byte
|
||
|
# include <cstdint> // uint32_t
|
||
|
# include <cstring> // std::memcpy
|
||
|
# include <limits> // std::numeric_limits
|
||
|
# include <new> // std::bad_alloc
|
||
|
# if defined(__GLIBCXX__) && !defined(_GLIBCXX_USE_DUAL_ABI)
|
||
|
// Workaround for pre gcc 5 libstdc++.
|
||
|
# include <memory> // std::allocator_traits
|
||
|
# endif
|
||
|
# include <stdexcept> // std::runtime_error
|
||
|
# include <string> // std::string
|
||
|
# include <system_error> // std::system_error
|
||
|
|
||
|
// Check FMT_CPLUSPLUS to avoid a warning in MSVC.
|
||
|
# if FMT_HAS_INCLUDE(<bit>) && FMT_CPLUSPLUS > 201703L
|
||
|
# include <bit> // std::bit_cast
|
||
|
# endif
|
||
|
|
||
|
// libc++ supports string_view in pre-c++17.
|
||
|
# if FMT_HAS_INCLUDE(<string_view>) && \
|
||
|
(FMT_CPLUSPLUS >= 201703L || defined(_LIBCPP_VERSION))
|
||
|
# include <string_view>
|
||
|
# define FMT_USE_STRING_VIEW
|
||
|
# endif
|
||
|
|
||
|
# if FMT_MSC_VERSION
|
||
|
# include <intrin.h> // _BitScanReverse[64], _umul128
|
||
|
# endif
|
||
|
#endif // FMT_MODULE
|
||
|
|
||
|
#if defined(FMT_USE_NONTYPE_TEMPLATE_ARGS)
|
||
|
// Use the provided definition.
|
||
|
#elif defined(__NVCOMPILER)
|
||
|
# define FMT_USE_NONTYPE_TEMPLATE_ARGS 0
|
||
|
#elif FMT_GCC_VERSION >= 903 && FMT_CPLUSPLUS >= 201709L
|
||
|
# define FMT_USE_NONTYPE_TEMPLATE_ARGS 1
|
||
|
#elif defined(__cpp_nontype_template_args) && \
|
||
|
__cpp_nontype_template_args >= 201911L
|
||
|
# define FMT_USE_NONTYPE_TEMPLATE_ARGS 1
|
||
|
#elif FMT_CLANG_VERSION >= 1200 && FMT_CPLUSPLUS >= 202002L
|
||
|
# define FMT_USE_NONTYPE_TEMPLATE_ARGS 1
|
||
|
#else
|
||
|
# define FMT_USE_NONTYPE_TEMPLATE_ARGS 0
|
||
|
#endif
|
||
|
|
||
|
#if defined __cpp_inline_variables && __cpp_inline_variables >= 201606L
|
||
|
# define FMT_INLINE_VARIABLE inline
|
||
|
#else
|
||
|
# define FMT_INLINE_VARIABLE
|
||
|
#endif
|
||
|
|
||
|
// Check if RTTI is disabled.
|
||
|
#ifdef FMT_USE_RTTI
|
||
|
// Use the provided definition.
|
||
|
#elif defined(__GXX_RTTI) || FMT_HAS_FEATURE(cxx_rtti) || defined(_CPPRTTI) || \
|
||
|
defined(__INTEL_RTTI__) || defined(__RTTI)
|
||
|
// __RTTI is for EDG compilers. _CPPRTTI is for MSVC.
|
||
|
# define FMT_USE_RTTI 1
|
||
|
#else
|
||
|
# define FMT_USE_RTTI 0
|
||
|
#endif
|
||
|
|
||
|
// Visibility when compiled as a shared library/object.
|
||
|
#if defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
|
||
|
# define FMT_SO_VISIBILITY(value) FMT_VISIBILITY(value)
|
||
|
#else
|
||
|
# define FMT_SO_VISIBILITY(value)
|
||
|
#endif
|
||
|
|
||
|
#if FMT_GCC_VERSION || FMT_CLANG_VERSION
|
||
|
# define FMT_NOINLINE __attribute__((noinline))
|
||
|
#else
|
||
|
# define FMT_NOINLINE
|
||
|
#endif
|
||
|
|
||
|
namespace std {
|
||
|
template <typename T> struct iterator_traits<fmt::basic_appender<T>> {
|
||
|
using iterator_category = output_iterator_tag;
|
||
|
using value_type = T;
|
||
|
using difference_type =
|
||
|
decltype(static_cast<int*>(nullptr) - static_cast<int*>(nullptr));
|
||
|
using pointer = void;
|
||
|
using reference = void;
|
||
|
};
|
||
|
} // namespace std
|
||
|
|
||
|
#ifndef FMT_THROW
|
||
|
# if FMT_USE_EXCEPTIONS
|
||
|
# if FMT_MSC_VERSION || defined(__NVCC__)
|
||
|
FMT_BEGIN_NAMESPACE
|
||
|
namespace detail {
|
||
|
template <typename Exception> inline void do_throw(const Exception& x) {
|
||
|
// Silence unreachable code warnings in MSVC and NVCC because these
|
||
|
// are nearly impossible to fix in a generic code.
|
||
|
volatile bool b = true;
|
||
|
if (b) throw x;
|
||
|
}
|
||
|
} // namespace detail
|
||
|
FMT_END_NAMESPACE
|
||
|
# define FMT_THROW(x) detail::do_throw(x)
|
||
|
# else
|
||
|
# define FMT_THROW(x) throw x
|
||
|
# endif
|
||
|
# else
|
||
|
# define FMT_THROW(x) \
|
||
|
::fmt::detail::assert_fail(__FILE__, __LINE__, (x).what())
|
||
|
# endif // FMT_USE_EXCEPTIONS
|
||
|
#endif // FMT_THROW
|
||
|
|
||
|
// Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of
|
||
|
// integer formatter template instantiations to just one by only using the
|
||
|
// largest integer type. This results in a reduction in binary size but will
|
||
|
// cause a decrease in integer formatting performance.
|
||
|
#if !defined(FMT_REDUCE_INT_INSTANTIATIONS)
|
||
|
# define FMT_REDUCE_INT_INSTANTIATIONS 0
|
||
|
#endif
|
||
|
|
||
|
FMT_BEGIN_NAMESPACE
|
||
|
|
||
|
template <typename Char, typename Traits, typename Allocator>
|
||
|
struct is_contiguous<std::basic_string<Char, Traits, Allocator>>
|
||
|
: std::true_type {};
|
||
|
|
||
|
namespace detail {
|
||
|
|
||
|
// __builtin_clz is broken in clang with Microsoft codegen:
|
||
|
// https://github.com/fmtlib/fmt/issues/519.
|
||
|
#if !FMT_MSC_VERSION
|
||
|
# if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION
|
||
|
# define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
|
||
|
# endif
|
||
|
# if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION
|
||
|
# define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
// Some compilers masquerade as both MSVC and GCC but otherwise support
|
||
|
// __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
|
||
|
// MSVC intrinsics if the clz and clzll builtins are not available.
|
||
|
#if FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL)
|
||
|
// Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
|
||
|
# ifndef __clang__
|
||
|
# pragma intrinsic(_BitScanReverse)
|
||
|
# ifdef _WIN64
|
||
|
# pragma intrinsic(_BitScanReverse64)
|
||
|
# endif
|
||
|
# endif
|
||
|
|
||
|
inline auto clz(uint32_t x) -> int {
|
||
|
FMT_ASSERT(x != 0, "");
|
||
|
FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning.
|
||
|
unsigned long r = 0;
|
||
|
_BitScanReverse(&r, x);
|
||
|
return 31 ^ static_cast<int>(r);
|
||
|
}
|
||
|
# define FMT_BUILTIN_CLZ(n) detail::clz(n)
|
||
|
|
||
|
inline auto clzll(uint64_t x) -> int {
|
||
|
FMT_ASSERT(x != 0, "");
|
||
|
FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning.
|
||
|
unsigned long r = 0;
|
||
|
# ifdef _WIN64
|
||
|
_BitScanReverse64(&r, x);
|
||
|
# else
|
||
|
// Scan the high 32 bits.
|
||
|
if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32)))
|
||
|
return 63 ^ static_cast<int>(r + 32);
|
||
|
// Scan the low 32 bits.
|
||
|
_BitScanReverse(&r, static_cast<uint32_t>(x));
|
||
|
# endif
|
||
|
return 63 ^ static_cast<int>(r);
|
||
|
}
|
||
|
# define FMT_BUILTIN_CLZLL(n) detail::clzll(n)
|
||
|
#endif // FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL)
|
||
|
|
||
|
FMT_CONSTEXPR inline void abort_fuzzing_if(bool condition) {
|
||
|
ignore_unused(condition);
|
||
|
#ifdef FMT_FUZZ
|
||
|
if (condition) throw std::runtime_error("fuzzing limit reached");
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#if defined(FMT_USE_STRING_VIEW)
|
||
|
template <typename Char> using std_string_view = std::basic_string_view<Char>;
|
||
|
#else
|
||
|
template <typename T> struct std_string_view {};
|
||
|
#endif
|
||
|
|
||
|
template <typename Char, Char... C> struct string_literal {
|
||
|
static constexpr Char value[sizeof...(C)] = {C...};
|
||
|
constexpr operator basic_string_view<Char>() const {
|
||
|
return {value, sizeof...(C)};
|
||
|
}
|
||
|
};
|
||
|
#if FMT_CPLUSPLUS < 201703L
|
||
|
template <typename Char, Char... C>
|
||
|
constexpr Char string_literal<Char, C...>::value[sizeof...(C)];
|
||
|
#endif
|
||
|
|
||
|
// Implementation of std::bit_cast for pre-C++20.
|
||
|
template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) == sizeof(From))>
|
||
|
FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To {
|
||
|
#ifdef __cpp_lib_bit_cast
|
||
|
if (is_constant_evaluated()) return std::bit_cast<To>(from);
|
||
|
#endif
|
||
|
auto to = To();
|
||
|
// The cast suppresses a bogus -Wclass-memaccess on GCC.
|
||
|
std::memcpy(static_cast<void*>(&to), &from, sizeof(to));
|
||
|
return to;
|
||
|
}
|
||
|
|
||
|
inline auto is_big_endian() -> bool {
|
||
|
#ifdef _WIN32
|
||
|
return false;
|
||
|
#elif defined(__BIG_ENDIAN__)
|
||
|
return true;
|
||
|
#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)
|
||
|
return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__;
|
||
|
#else
|
||
|
struct bytes {
|
||
|
char data[sizeof(int)];
|
||
|
};
|
||
|
return bit_cast<bytes>(1).data[0] == 0;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
class uint128_fallback {
|
||
|
private:
|
||
|
uint64_t lo_, hi_;
|
||
|
|
||
|
public:
|
||
|
constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {}
|
||
|
constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {}
|
||
|
|
||
|
constexpr auto high() const noexcept -> uint64_t { return hi_; }
|
||
|
constexpr auto low() const noexcept -> uint64_t { return lo_; }
|
||
|
|
||
|
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
|
||
|
constexpr explicit operator T() const {
|
||
|
return static_cast<T>(lo_);
|
||
|
}
|
||
|
|
||
|
friend constexpr auto operator==(const uint128_fallback& lhs,
|
||
|
const uint128_fallback& rhs) -> bool {
|
||
|
return lhs.hi_ == rhs.hi_ && lhs.lo_ == rhs.lo_;
|
||
|
}
|
||
|
friend constexpr auto operator!=(const uint128_fallback& lhs,
|
||
|
const uint128_fallback& rhs) -> bool {
|
||
|
return !(lhs == rhs);
|
||
|
}
|
||
|
friend constexpr auto operator>(const uint128_fallback& lhs,
|
||
|
const uint128_fallback& rhs) -> bool {
|
||
|
return lhs.hi_ != rhs.hi_ ? lhs.hi_ > rhs.hi_ : lhs.lo_ > rhs.lo_;
|
||
|
}
|
||
|
friend constexpr auto operator|(const uint128_fallback& lhs,
|
||
|
const uint128_fallback& rhs)
|
||
|
-> uint128_fallback {
|
||
|
return {lhs.hi_ | rhs.hi_, lhs.lo_ | rhs.lo_};
|
||
|
}
|
||
|
friend constexpr auto operator&(const uint128_fallback& lhs,
|
||
|
const uint128_fallback& rhs)
|
||
|
-> uint128_fallback {
|
||
|
return {lhs.hi_ & rhs.hi_, lhs.lo_ & rhs.lo_};
|
||
|
}
|
||
|
friend constexpr auto operator~(const uint128_fallback& n)
|
||
|
-> uint128_fallback {
|
||
|
return {~n.hi_, ~n.lo_};
|
||
|
}
|
||
|
friend FMT_CONSTEXPR auto operator+(const uint128_fallback& lhs,
|
||
|
const uint128_fallback& rhs)
|
||
|
-> uint128_fallback {
|
||
|
auto result = uint128_fallback(lhs);
|
||
|
result += rhs;
|
||
|
return result;
|
||
|
}
|
||
|
friend FMT_CONSTEXPR auto operator*(const uint128_fallback& lhs, uint32_t rhs)
|
||
|
-> uint128_fallback {
|
||
|
FMT_ASSERT(lhs.hi_ == 0, "");
|
||
|
uint64_t hi = (lhs.lo_ >> 32) * rhs;
|
||
|
uint64_t lo = (lhs.lo_ & ~uint32_t()) * rhs;
|
||
|
uint64_t new_lo = (hi << 32) + lo;
|
||
|
return {(hi >> 32) + (new_lo < lo ? 1 : 0), new_lo};
|
||
|
}
|
||
|
friend constexpr auto operator-(const uint128_fallback& lhs, uint64_t rhs)
|
||
|
-> uint128_fallback {
|
||
|
return {lhs.hi_ - (lhs.lo_ < rhs ? 1 : 0), lhs.lo_ - rhs};
|
||
|
}
|
||
|
FMT_CONSTEXPR auto operator>>(int shift) const -> uint128_fallback {
|
||
|
if (shift == 64) return {0, hi_};
|
||
|
if (shift > 64) return uint128_fallback(0, hi_) >> (shift - 64);
|
||
|
return {hi_ >> shift, (hi_ << (64 - shift)) | (lo_ >> shift)};
|
||
|
}
|
||
|
FMT_CONSTEXPR auto operator<<(int shift) const -> uint128_fallback {
|
||
|
if (shift == 64) return {lo_, 0};
|
||
|
if (shift > 64) return uint128_fallback(lo_, 0) << (shift - 64);
|
||
|
return {hi_ << shift | (lo_ >> (64 - shift)), (lo_ << shift)};
|
||
|
}
|
||
|
FMT_CONSTEXPR auto operator>>=(int shift) -> uint128_fallback& {
|
||
|
return *this = *this >> shift;
|
||
|
}
|
||
|
FMT_CONSTEXPR void operator+=(uint128_fallback n) {
|
||
|
uint64_t new_lo = lo_ + n.lo_;
|
||
|
uint64_t new_hi = hi_ + n.hi_ + (new_lo < lo_ ? 1 : 0);
|
||
|
FMT_ASSERT(new_hi >= hi_, "");
|
||
|
lo_ = new_lo;
|
||
|
hi_ = new_hi;
|
||
|
}
|
||
|
FMT_CONSTEXPR void operator&=(uint128_fallback n) {
|
||
|
lo_ &= n.lo_;
|
||
|
hi_ &= n.hi_;
|
||
|
}
|
||
|
|
||
|
FMT_CONSTEXPR20 auto operator+=(uint64_t n) noexcept -> uint128_fallback& {
|
||
|
if (is_constant_evaluated()) {
|
||
|
lo_ += n;
|
||
|
hi_ += (lo_ < n ? 1 : 0);
|
||
|
return *this;
|
||
|
}
|
||
|
#if FMT_HAS_BUILTIN(__builtin_addcll) && !defined(__ibmxl__)
|
||
|
unsigned long long carry;
|
||
|
lo_ = __builtin_addcll(lo_, n, 0, &carry);
|
||
|
hi_ += carry;
|
||
|
#elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) && !defined(__ibmxl__)
|
||
|
unsigned long long result;
|
||
|
auto carry = __builtin_ia32_addcarryx_u64(0, lo_, n, &result);
|
||
|
lo_ = result;
|
||
|
hi_ += carry;
|
||
|
#elif defined(_MSC_VER) && defined(_M_X64)
|
||
|
auto carry = _addcarry_u64(0, lo_, n, &lo_);
|
||
|
_addcarry_u64(carry, hi_, 0, &hi_);
|
||
|
#else
|
||
|
lo_ += n;
|
||
|
hi_ += (lo_ < n ? 1 : 0);
|
||
|
#endif
|
||
|
return *this;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
using uint128_t = conditional_t<FMT_USE_INT128, uint128_opt, uint128_fallback>;
|
||
|
|
||
|
#ifdef UINTPTR_MAX
|
||
|
using uintptr_t = ::uintptr_t;
|
||
|
#else
|
||
|
using uintptr_t = uint128_t;
|
||
|
#endif
|
||
|
|
||
|
// Returns the largest possible value for type T. Same as
|
||
|
// std::numeric_limits<T>::max() but shorter and not affected by the max macro.
|
||
|
template <typename T> constexpr auto max_value() -> T {
|
||
|
return (std::numeric_limits<T>::max)();
|
||
|
}
|
||
|
template <typename T> constexpr auto num_bits() -> int {
|
||
|
return std::numeric_limits<T>::digits;
|
||
|
}
|
||
|
// std::numeric_limits<T>::digits may return 0 for 128-bit ints.
|
||
|
template <> constexpr auto num_bits<int128_opt>() -> int { return 128; }
|
||
|
template <> constexpr auto num_bits<uint128_opt>() -> int { return 128; }
|
||
|
template <> constexpr auto num_bits<uint128_fallback>() -> int { return 128; }
|
||
|
|
||
|
// A heterogeneous bit_cast used for converting 96-bit long double to uint128_t
|
||
|
// and 128-bit pointers to uint128_fallback.
|
||
|
template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) > sizeof(From))>
|
||
|
inline auto bit_cast(const From& from) -> To {
|
||
|
constexpr auto size = static_cast<int>(sizeof(From) / sizeof(unsigned short));
|
||
|
struct data_t {
|
||
|
unsigned short value[static_cast<unsigned>(size)];
|
||
|
} data = bit_cast<data_t>(from);
|
||
|
auto result = To();
|
||
|
if (const_check(is_big_endian())) {
|
||
|
for (int i = 0; i < size; ++i)
|
||
|
result = (result << num_bits<unsigned short>()) | data.value[i];
|
||
|
} else {
|
||
|
for (int i = size - 1; i >= 0; --i)
|
||
|
result = (result << num_bits<unsigned short>()) | data.value[i];
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template <typename UInt>
|
||
|
FMT_CONSTEXPR20 inline auto countl_zero_fallback(UInt n) -> int {
|
||
|
int lz = 0;
|
||
|
constexpr UInt msb_mask = static_cast<UInt>(1) << (num_bits<UInt>() - 1);
|
||
|
for (; (n & msb_mask) == 0; n <<= 1) lz++;
|
||
|
return lz;
|
||
|
}
|
||
|
|
||
|
FMT_CONSTEXPR20 inline auto countl_zero(uint32_t n) -> int {
|
||
|
#ifdef FMT_BUILTIN_CLZ
|
||
|
if (!is_constant_evaluated()) return FMT_BUILTIN_CLZ(n);
|
||
|
#endif
|
||
|
return countl_zero_fallback(n);
|
||
|
}
|
||
|
|
||
|
FMT_CONSTEXPR20 inline auto countl_zero(uint64_t n) -> int {
|
||
|
#ifdef FMT_BUILTIN_CLZLL
|
||
|
if (!is_constant_evaluated()) return FMT_BUILTIN_CLZLL(n);
|
||
|
#endif
|
||
|
return countl_zero_fallback(n);
|
||
|
}
|
||
|
|
||
|
FMT_INLINE void assume(bool condition) {
|
||
|
(void)condition;
|
||
|
#if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION
|
||
|
__builtin_assume(condition);
|
||
|
#elif FMT_GCC_VERSION
|
||
|
if (!condition) __builtin_unreachable();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// Attempts to reserve space for n extra characters in the output range.
|
||
|
// Returns a pointer to the reserved range or a reference to it.
|
||
|
template <typename OutputIt,
|
||
|
FMT_ENABLE_IF(is_back_insert_iterator<OutputIt>::value&&
|
||
|
is_contiguous<typename OutputIt::container>::value)>
|
||
|
#if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION
|
||
|
__attribute__((no_sanitize("undefined")))
|
||
|
#endif
|
||
|
FMT_CONSTEXPR20 inline auto
|
||
|
reserve(OutputIt it, size_t n) -> typename OutputIt::value_type* {
|
||
|
auto& c = get_container(it);
|
||
|
size_t size = c.size();
|
||
|
c.resize(size + n);
|
||
|
return &c[size];
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
FMT_CONSTEXPR20 inline auto reserve(basic_appender<T> it, size_t n)
|
||
|
-> basic_appender<T> {
|
||
|
buffer<T>& buf = get_container(it);
|
||
|
buf.try_reserve(buf.size() + n);
|
||
|
return it;
|
||
|
}
|
||
|
|
||
|
template <typename Iterator>
|
||
|
constexpr auto reserve(Iterator& it, size_t) -> Iterator& {
|
||
|
return it;
|
||
|
}
|
||
|
|
||
|
template <typename OutputIt>
|
||
|
using reserve_iterator =
|
||
|
remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>;
|
||
|
|
||
|
template <typename T, typename OutputIt>
|
||
|
constexpr auto to_pointer(OutputIt, size_t) -> T* {
|
||
|
return nullptr;
|
||
|
}
|
||
|
template <typename T>
|
||
|
FMT_CONSTEXPR20 auto to_pointer(basic_appender<T> it, size_t n) -> T* {
|
||
|
buffer<T>& buf = get_container(it);
|
||
|
buf.try_reserve(buf.size() + n);
|
||
|
auto size = buf.size();
|
||
|
if (buf.capacity() < size + n) return nullptr;
|
||
|
buf.try_resize(size + n);
|
||
|
return buf.data() + size;
|
||
|
}
|
||
|
|
||
|
template <typename OutputIt,
|
||
|
FMT_ENABLE_IF(is_back_insert_iterator<OutputIt>::value&&
|
||
|
is_contiguous<typename OutputIt::container>::value)>
|
||
|
inline auto base_iterator(OutputIt it,
|
||
|
typename OutputIt::container_type::value_type*)
|
||
|
-> OutputIt {
|
||
|
return it;
|
||
|
}
|
||
|
|
||
|
template <typename Iterator>
|
||
|
constexpr auto base_iterator(Iterator, Iterator it) -> Iterator {
|
||
|
return it;
|
||
|
}
|
||
|
|
||
|
// <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n
|
||
|
// instead (#1998).
|
||
|
template <typename OutputIt, typename Size, typename T>
|
||
|
FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value)
|
||
|
-> OutputIt {
|
||
|
for (Size i = 0; i < count; ++i) *out++ = value;
|
||
|
return out;
|
||
|
}
|
||
|
template <typename T, typename Size>
|
||
|
FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* {
|
||
|
if (is_constant_evaluated()) return fill_n<T*, Size, T>(out, count, value);
|
||
|
std::memset(out, value, to_unsigned(count));
|
||
|
return out + count;
|
||
|
}
|
||
|
|
||
|
template <typename OutChar, typename InputIt, typename OutputIt>
|
||
|
FMT_CONSTEXPR FMT_NOINLINE auto copy_noinline(InputIt begin, InputIt end,
|
||
|
OutputIt out) -> OutputIt {
|
||
|
return copy<OutChar>(begin, end, out);
|
||
|
}
|
||
|
|
||
|
// A public domain branchless UTF-8 decoder by Christopher Wellons:
|
||
|
// https://github.com/skeeto/branchless-utf8
|
||
|
/* Decode the next character, c, from s, reporting errors in e.
|
||
|
*
|
||
|
* Since this is a branchless decoder, four bytes will be read from the
|
||
|
* buffer regardless of the actual length of the next character. This
|
||
|
* means the buffer _must_ have at least three bytes of zero padding
|
||
|
* following the end of the data stream.
|
||
|
*
|
||
|
* Errors are reported in e, which will be non-zero if the parsed
|
||
|
* character was somehow invalid: invalid byte sequence, non-canonical
|
||
|
* encoding, or a surrogate half.
|
||
|
*
|
||
|
* The function returns a pointer to the next character. When an error
|
||
|
* occurs, this pointer will be a guess that depends on the particular
|
||
|
* error, but it will always advance at least one byte.
|
||
|
*/
|
||
|
FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e)
|
||
|
-> const char* {
|
||
|
constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
|
||
|
constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
|
||
|
constexpr const int shiftc[] = {0, 18, 12, 6, 0};
|
||
|
constexpr const int shifte[] = {0, 6, 4, 2, 0};
|
||
|
|
||
|
int len = "\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\0\0\0\0\0\0\0\0\2\2\2\2\3\3\4"
|
||
|
[static_cast<unsigned char>(*s) >> 3];
|
||
|
// Compute the pointer to the next character early so that the next
|
||
|
// iteration can start working on the next character. Neither Clang
|
||
|
// nor GCC figure out this reordering on their own.
|
||
|
const char* next = s + len + !len;
|
||
|
|
||
|
using uchar = unsigned char;
|
||
|
|
||
|
// Assume a four-byte character and load four bytes. Unused bits are
|
||
|
// shifted out.
|
||
|
*c = uint32_t(uchar(s[0]) & masks[len]) << 18;
|
||
|
*c |= uint32_t(uchar(s[1]) & 0x3f) << 12;
|
||
|
*c |= uint32_t(uchar(s[2]) & 0x3f) << 6;
|
||
|
*c |= uint32_t(uchar(s[3]) & 0x3f) << 0;
|
||
|
*c >>= shiftc[len];
|
||
|
|
||
|
// Accumulate the various error conditions.
|
||
|
*e = (*c < mins[len]) << 6; // non-canonical encoding
|
||
|
*e |= ((*c >> 11) == 0x1b) << 7; // surrogate half?
|
||
|
*e |= (*c > 0x10FFFF) << 8; // out of range?
|
||
|
*e |= (uchar(s[1]) & 0xc0) >> 2;
|
||
|
*e |= (uchar(s[2]) & 0xc0) >> 4;
|
||
|
*e |= uchar(s[3]) >> 6;
|
||
|
*e ^= 0x2a; // top two bits of each tail byte correct?
|
||
|
*e >>= shifte[len];
|
||
|
|
||
|
return next;
|
||
|
}
|
||
|
|
||
|
constexpr FMT_INLINE_VARIABLE uint32_t invalid_code_point = ~uint32_t();
|
||
|
|
||
|
// Invokes f(cp, sv) for every code point cp in s with sv being the string view
|
||
|
// corresponding to the code point. cp is invalid_code_point on error.
|
||
|
template <typename F>
|
||
|
FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) {
|
||
|
auto decode = [f](const char* buf_ptr, const char* ptr) {
|
||
|
auto cp = uint32_t();
|
||
|
auto error = 0;
|
||
|
auto end = utf8_decode(buf_ptr, &cp, &error);
|
||
|
bool result = f(error ? invalid_code_point : cp,
|
||
|
string_view(ptr, error ? 1 : to_unsigned(end - buf_ptr)));
|
||
|
return result ? (error ? buf_ptr + 1 : end) : nullptr;
|
||
|
};
|
||
|
|
||
|
auto p = s.data();
|
||
|
const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars.
|
||
|
if (s.size() >= block_size) {
|
||
|
for (auto end = p + s.size() - block_size + 1; p < end;) {
|
||
|
p = decode(p, p);
|
||
|
if (!p) return;
|
||
|
}
|
||
|
}
|
||
|
auto num_chars_left = to_unsigned(s.data() + s.size() - p);
|
||
|
if (num_chars_left == 0) return;
|
||
|
|
||
|
// Suppress bogus -Wstringop-overflow.
|
||
|
if (FMT_GCC_VERSION) num_chars_left &= 3;
|
||
|
char buf[2 * block_size - 1] = {};
|
||
|
copy<char>(p, p + num_chars_left, buf);
|
||
|
const char* buf_ptr = buf;
|
||
|
do {
|
||
|
auto end = decode(buf_ptr, p);
|
||
|
if (!end) return;
|
||
|
p += end - buf_ptr;
|
||
|
buf_ptr = end;
|
||
|
} while (buf_ptr < buf + num_chars_left);
|
||
|
}
|
||
|
|
||
|
template <typename Char>
|
||
|
inline auto compute_width(basic_string_view<Char> s) -> size_t {
|
||
|
return s.size();
|
||
|
}
|
||
|
|
||
|
// Computes approximate display width of a UTF-8 string.
|
||
|
FMT_CONSTEXPR inline auto compute_width(string_view s) -> size_t {
|
||
|
size_t num_code_points = 0;
|
||
|
// It is not a lambda for compatibility with C++14.
|
||
|
struct count_code_points {
|
||
|
size_t* count;
|
||
|
FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool {
|
||
|
*count += to_unsigned(
|
||
|
1 +
|
||
|
(cp >= 0x1100 &&
|
||
|
(cp <= 0x115f || // Hangul Jamo init. consonants
|
||
|
cp == 0x2329 || // LEFT-POINTING ANGLE BRACKET
|
||
|
cp == 0x232a || // RIGHT-POINTING ANGLE BRACKET
|
||
|
// CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE:
|
||
|
(cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) ||
|
||
|
(cp >= 0xac00 && cp <= 0xd7a3) || // Hangul Syllables
|
||
|
(cp >= 0xf900 && cp <= 0xfaff) || // CJK Compatibility Ideographs
|
||
|
(cp >= 0xfe10 && cp <= 0xfe19) || // Vertical Forms
|
||
|
(cp >= 0xfe30 && cp <= 0xfe6f) || // CJK Compatibility Forms
|
||
|
(cp >= 0xff00 && cp <= 0xff60) || // Fullwidth Forms
|
||
|
(cp >= 0xffe0 && cp <= 0xffe6) || // Fullwidth Forms
|
||
|
(cp >= 0x20000 && cp <= 0x2fffd) || // CJK
|
||
|
(cp >= 0x30000 && cp <= 0x3fffd) ||
|
||
|
// Miscellaneous Symbols and Pictographs + Emoticons:
|
||
|
(cp >= 0x1f300 && cp <= 0x1f64f) ||
|
||
|
// Supplemental Symbols and Pictographs:
|
||
|
(cp >= 0x1f900 && cp <= 0x1f9ff))));
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
// We could avoid branches by using utf8_decode directly.
|
||
|
for_each_codepoint(s, count_code_points{&num_code_points});
|
||
|
return num_code_points;
|
||
|
}
|
||
|
|
||
|
template <typename Char>
|
||
|
inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t {
|
||
|
return min_of(n, s.size());
|
||
|
}
|
||
|
|
||
|
// Calculates the index of the nth code point in a UTF-8 string.
|
||
|
inline auto code_point_index(string_view s, size_t n) -> size_t {
|
||
|
size_t result = s.size();
|
||
|
const char* begin = s.begin();
|
||
|
for_each_codepoint(s, [begin, &n, &result](uint32_t, string_view sv) {
|
||
|
if (n != 0) {
|
||
|
--n;
|
||
|
return true;
|
||
|
}
|
||
|
result = to_unsigned(sv.begin() - begin);
|
||
|
return false;
|
||
|
});
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template <typename T> struct is_integral : std::is_integral<T> {};
|
||
|
template <> struct is_integral<int128_opt> : std::true_type {};
|
||
|
template <> struct is_integral<uint128_t> : std::true_type {};
|
||
|
|
||
|
template <typename T>
|
||
|
using is_signed =
|
||
|
std::integral_constant<bool, std::numeric_limits<T>::is_signed ||
|
||
|
std::is_same<T, int128_opt>::value>;
|
||
|
|
||
|
template <typename T>
|
||
|
using is_integer =
|
||
|
bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value &&
|
||
|
!std::is_same<T, char>::value &&
|
||
|
!std::is_same<T, wchar_t>::value>;
|
||
|
|
||
|
#if defined(FMT_USE_FLOAT128)
|
||
|
// Use the provided definition.
|
||
|
#elif FMT_CLANG_VERSION && FMT_HAS_INCLUDE(<quadmath.h>)
|
||
|
# define FMT_USE_FLOAT128 1
|
||
|
#elif FMT_GCC_VERSION && defined(_GLIBCXX_USE_FLOAT128) && \
|
||
|
!defined(__STRICT_ANSI__)
|
||
|
# define FMT_USE_FLOAT128 1
|
||
|
#else
|
||
|
# define FMT_USE_FLOAT128 0
|
||
|
#endif
|
||
|
#if FMT_USE_FLOAT128
|
||
|
using float128 = __float128;
|
||
|
#else
|
||
|
struct float128 {};
|
||
|
#endif
|
||
|
|
||
|
template <typename T> using is_float128 = std::is_same<T, float128>;
|
||
|
|
||
|
template <typename T>
|
||
|
using is_floating_point =
|
||
|
bool_constant<std::is_floating_point<T>::value || is_float128<T>::value>;
|
||
|
|
||
|
template <typename T, bool = std::is_floating_point<T>::value>
|
||
|
struct is_fast_float : bool_constant<std::numeric_limits<T>::is_iec559 &&
|
||
|
sizeof(T) <= sizeof(double)> {};
|
||
|
template <typename T> struct is_fast_float<T, false> : std::false_type {};
|
||
|
|
||
|
template <typename T>
|
||
|
using is_double_double = bool_constant<std::numeric_limits<T>::digits == 106>;
|
||
|
|
||
|
#ifndef FMT_USE_FULL_CACHE_DRAGONBOX
|
||
|
# define FMT_USE_FULL_CACHE_DRAGONBOX 0
|
||
|
#endif
|
||
|
|
||
|
// An allocator that uses malloc/free to allow removing dependency on the C++
|
||
|
// standard libary runtime.
|
||
|
template <typename T> struct allocator {
|
||
|
using value_type = T;
|
||
|
|
||
|
T* allocate(size_t n) {
|
||
|
FMT_ASSERT(n <= max_value<size_t>() / sizeof(T), "");
|
||
|
T* p = static_cast<T*>(malloc(n * sizeof(T)));
|
||
|
if (!p) FMT_THROW(std::bad_alloc());
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
void deallocate(T* p, size_t) { free(p); }
|
||
|
};
|
||
|
|
||
|
} // namespace detail
|
||
|
|
||
|
FMT_BEGIN_EXPORT
|
||
|
|
||
|
// The number of characters to store in the basic_memory_buffer object itself
|
||
|
// to avoid dynamic memory allocation.
|
||
|
enum { inline_buffer_size = 500 };
|
||
|
|
||
|
/**
|
||
|
* A dynamically growing memory buffer for trivially copyable/constructible
|
||
|
* types with the first `SIZE` elements stored in the object itself. Most
|
||
|
* commonly used via the `memory_buffer` alias for `char`.
|
||
|
*
|
||
|
* **Example**:
|
||
|
*
|
||
|
* auto out = fmt::memory_buffer();
|
||
|
* fmt::format_to(std::back_inserter(out), "The answer is {}.", 42);
|
||
|
*
|
||
|
* This will append "The answer is 42." to `out`. The buffer content can be
|
||
|
* converted to `std::string` with `to_string(out)`.
|
||
|
*/
|
||
|
template <typename T, size_t SIZE = inline_buffer_size,
|
||
|
typename Allocator = detail::allocator<T>>
|
||
|
class basic_memory_buffer : public detail::buffer<T> {
|
||
|
private:
|
||
|
T store_[SIZE];
|
||
|
|
||
|
// Don't inherit from Allocator to avoid generating type_info for it.
|
||
|
FMT_NO_UNIQUE_ADDRESS Allocator alloc_;
|
||
|
|
||
|
// Deallocate memory allocated by the buffer.
|
||
|
FMT_CONSTEXPR20 void deallocate() {
|
||
|
T* data = this->data();
|
||
|
if (data != store_) alloc_.deallocate(data, this->capacity());
|
||
|
}
|
||
|
|
||
|
static FMT_CONSTEXPR20 void grow(detail::buffer<T>& buf, size_t size) {
|
||
|
detail::abort_fuzzing_if(size > 5000);
|
||
|
auto& self = static_cast<basic_memory_buffer&>(buf);
|
||
|
const size_t max_size =
|
||
|
std::allocator_traits<Allocator>::max_size(self.alloc_);
|
||
|
size_t old_capacity = buf.capacity();
|
||
|
size_t new_capacity = old_capacity + old_capacity / 2;
|
||
|
if (size > new_capacity)
|
||
|
new_capacity = size;
|
||
|
else if (new_capacity > max_size)
|
||
|
new_capacity = max_of(size, max_size);
|
||
|
T* old_data = buf.data();
|
||
|
T* new_data = self.alloc_.allocate(new_capacity);
|
||
|
// Suppress a bogus -Wstringop-overflow in gcc 13.1 (#3481).
|
||
|
detail::assume(buf.size() <= new_capacity);
|
||
|
// The following code doesn't throw, so the raw pointer above doesn't leak.
|
||
|
memcpy(new_data, old_data, buf.size() * sizeof(T));
|
||
|
self.set(new_data, new_capacity);
|
||
|
// deallocate must not throw according to the standard, but even if it does,
|
||
|
// the buffer already uses the new storage and will deallocate it in
|
||
|
// destructor.
|
||
|
if (old_data != self.store_) self.alloc_.deallocate(old_data, old_capacity);
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
using value_type = T;
|
||
|
using const_reference = const T&;
|
||
|
|
||
|
FMT_CONSTEXPR explicit basic_memory_buffer(
|
||
|
const Allocator& alloc = Allocator())
|
||
|
: detail::buffer<T>(grow), alloc_(alloc) {
|
||
|
this->set(store_, SIZE);
|
||
|
if (detail::is_constant_evaluated()) detail::fill_n(store_, SIZE, T());
|
||
|
}
|
||
|
FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); }
|
||
|
|
||
|
private:
|
||
|
// Move data from other to this buffer.
|
||
|
FMT_CONSTEXPR20 void move(basic_memory_buffer& other) {
|
||
|
alloc_ = std::move(other.alloc_);
|
||
|
T* data = other.data();
|
||
|
size_t size = other.size(), capacity = other.capacity();
|
||
|
if (data == other.store_) {
|
||
|
this->set(store_, capacity);
|
||
|
detail::copy<T>(other.store_, other.store_ + size, store_);
|
||
|
} else {
|
||
|
this->set(data, capacity);
|
||
|
// Set pointer to the inline array so that delete is not called
|
||
|
// when deallocating.
|
||
|
other.set(other.store_, 0);
|
||
|
other.clear();
|
||
|
}
|
||
|
this->resize(size);
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
/// Constructs a `basic_memory_buffer` object moving the content of the other
|
||
|
/// object to it.
|
||
|
FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other) noexcept
|
||
|
: detail::buffer<T>(grow) {
|
||
|
move(other);
|
||
|
}
|
||
|
|
||
|
/// Moves the content of the other `basic_memory_buffer` object to this one.
|
||
|
auto operator=(basic_memory_buffer&& other) noexcept -> basic_memory_buffer& {
|
||
|
FMT_ASSERT(this != &other, "");
|
||
|
deallocate();
|
||
|
move(other);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// Returns a copy of the allocator associated with this buffer.
|
||
|
auto get_allocator() const -> Allocator { return alloc_; }
|
||
|
|
||
|
/// Resizes the buffer to contain `count` elements. If T is a POD type new
|
||
|
/// elements may not be initialized.
|
||
|
FMT_CONSTEXPR void resize(size_t count) { this->try_resize(count); }
|
||
|
|
||
|
/// Increases the buffer capacity to `new_capacity`.
|
||
|
void reserve(size_t new_capacity) { this->try_reserve(new_capacity); }
|
||
|
|
||
|
using detail::buffer<T>::append;
|
||
|
template <typename ContiguousRange>
|
||
|
FMT_CONSTEXPR20 void append(const ContiguousRange& range) {
|
||
|
append(range.data(), range.data() + range.size());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
using memory_buffer = basic_memory_buffer<char>;
|
||
|
|
||
|
template <size_t SIZE>
|
||
|
FMT_NODISCARD auto to_string(const basic_memory_buffer<char, SIZE>& buf)
|
||
|
-> std::string {
|
||
|
auto size = buf.size();
|
||
|
detail::assume(size < std::string().max_size());
|
||
|
return {buf.data(), size};
|
||
|
}
|
||
|
|
||
|
// A writer to a buffered stream. It doesn't own the underlying stream.
|
||
|
class writer {
|
||
|
private:
|
||
|
detail::buffer<char>* buf_;
|
||
|
|
||
|
// We cannot create a file buffer in advance because any write to a FILE may
|
||
|
// invalidate it.
|
||
|
FILE* file_;
|
||
|
|
||
|
public:
|
||
|
inline writer(FILE* f) : buf_(nullptr), file_(f) {}
|
||
|
inline writer(detail::buffer<char>& buf) : buf_(&buf) {}
|
||
|
|
||
|
/// Formats `args` according to specifications in `fmt` and writes the
|
||
|
/// output to the file.
|
||
|
template <typename... T> void print(format_string<T...> fmt, T&&... args) {
|
||
|
if (buf_)
|
||
|
fmt::format_to(appender(*buf_), fmt, std::forward<T>(args)...);
|
||
|
else
|
||
|
fmt::print(file_, fmt, std::forward<T>(args)...);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class string_buffer {
|
||
|
private:
|
||
|
std::string str_;
|
||
|
detail::container_buffer<std::string> buf_;
|
||
|
|
||
|
public:
|
||
|
inline string_buffer() : buf_(str_) {}
|
||
|
|
||
|
inline operator writer() { return buf_; }
|
||
|
inline std::string& str() { return str_; }
|
||
|
};
|
||
|
|
||
|
template <typename T, size_t SIZE, typename Allocator>
|
||
|
struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type {
|
||
|
};
|
||
|
|
||
|
// Suppress a misleading warning in older versions of clang.
|
||
|
FMT_PRAGMA_CLANG(diagnostic ignored "-Wweak-vtables")
|
||
|
|
||
|
/// An error reported from a formatting function.
|
||
|
class FMT_SO_VISIBILITY("default") format_error : public std::runtime_error {
|
||
|
public:
|
||
|
using std::runtime_error::runtime_error;
|
||
|
};
|
||
|
|
||
|
class loc_value;
|
||
|
|
||
|
FMT_END_EXPORT
|
||
|
namespace detail {
|
||
|
FMT_API auto write_console(int fd, string_view text) -> bool;
|
||
|
FMT_API void print(FILE*, string_view);
|
||
|
} // namespace detail
|
||
|
|
||
|
namespace detail {
|
||
|
template <typename Char, size_t N> struct fixed_string {
|
||
|
FMT_CONSTEXPR20 fixed_string(const Char (&s)[N]) {
|
||
|
detail::copy<Char, const Char*, Char*>(static_cast<const Char*>(s), s + N,
|
||
|
data);
|
||
|
}
|
||
|
Char data[N] = {};
|
||
|
};
|
||
|
|
||
|
// Converts a compile-time string to basic_string_view.
|
||
|
FMT_EXPORT template <typename Char, size_t N>
|
||
|
constexpr auto compile_string_to_view(const Char (&s)[N])
|
||
|
-> basic_string_view<Char> {
|
||
|
// Remove trailing NUL character if needed. Won't be present if this is used
|
||
|
// with a raw character array (i.e. not defined as a string).
|
||
|
return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)};
|
||
|
}
|
||
|
FMT_EXPORT template <typename Char>
|
||
|
constexpr auto compile_string_to_view(basic_string_view<Char> s)
|
||
|
-> basic_string_view<Char> {
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
// Returns true if value is negative, false otherwise.
|
||
|
// Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
|
||
|
template <typename T, FMT_ENABLE_IF(is_signed<T>::value)>
|
||
|
constexpr auto is_negative(T value) -> bool {
|
||
|
return value < 0;
|
||
|
}
|
||
|
template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)>
|
||
|
constexpr auto is_negative(T) -> bool {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Smallest of uint32_t, uint64_t, uint128_t that is large enough to
|
||
|
// represent all values of an integral type T.
|
||
|
template <typename T>
|
||
|
using uint32_or_64_or_128_t =
|
||
|
conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS,
|
||
|
uint32_t,
|
||
|
conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>;
|
||
|
template <typename T>
|
||
|
using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>;
|
||
|
|
||
|
#define FMT_POWERS_OF_10(factor) \
|
||
|
factor * 10, (factor) * 100, (factor) * 1000, (factor) * 10000, \
|
||
|
(factor) * 100000, (factor) * 1000000, (factor) * 10000000, \
|
||
|
(factor) * 100000000, (factor) * 1000000000
|
||
|
|
||
|
// Converts value in the range [0, 100) to a string.
|
||
|
// GCC generates slightly better code when value is pointer-size.
|
||
|
inline auto digits2(size_t value) -> const char* {
|
||
|
// Align data since unaligned access may be slower when crossing a
|
||
|
// hardware-specific boundary.
|
||
|
alignas(2) static const char data[] =
|
||
|
"0001020304050607080910111213141516171819"
|
||
|
"2021222324252627282930313233343536373839"
|
||
|
"4041424344454647484950515253545556575859"
|
||
|
"6061626364656667686970717273747576777879"
|
||
|
"8081828384858687888990919293949596979899";
|
||
|
return &data[value * 2];
|
||
|
}
|
||
|
|
||
|
template <typename Char> constexpr auto getsign(sign s) -> Char {
|
||
|
return static_cast<char>(((' ' << 24) | ('+' << 16) | ('-' << 8)) >>
|
||
|
(static_cast<int>(s) * 8));
|
||
|
}
|
||
|
|
||
|
template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int {
|
||
|
int count = 1;
|
||
|
for (;;) {
|
||
|
// Integer division is slow so do it for a group of four digits instead
|
||
|
// of for every digit. The idea comes from the talk by Alexandrescu
|
||
|
// "Three Optimization Tips for C++". See speed-test for a comparison.
|
||
|
if (n < 10) return count;
|
||
|
if (n < 100) return count + 1;
|
||
|
if (n < 1000) return count + 2;
|
||
|
if (n < 10000) return count + 3;
|
||
|
n /= 10000u;
|
||
|
count += 4;
|
||
|
}
|
||
|
}
|
||
|
#if FMT_USE_INT128
|
||
|
FMT_CONSTEXPR inline auto count_digits(uint128_opt n) -> int {
|
||
|
return count_digits_fallback(n);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef FMT_BUILTIN_CLZLL
|
||
|
// It is a separate function rather than a part of count_digits to workaround
|
||
|
// the lack of static constexpr in constexpr functions.
|
||
|
inline auto do_count_digits(uint64_t n) -> int {
|
||
|
// This has comparable performance to the version by Kendall Willets
|
||
|
// (https://github.com/fmtlib/format-benchmark/blob/master/digits10)
|
||
|
// but uses smaller tables.
|
||
|
// Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)).
|
||
|
static constexpr uint8_t bsr2log10[] = {
|
||
|
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5,
|
||
|
6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
|
||
|
10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
|
||
|
15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20};
|
||
|
auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63];
|
||
|
static constexpr const uint64_t zero_or_powers_of_10[] = {
|
||
|
0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL),
|
||
|
10000000000000000000ULL};
|
||
|
return t - (n < zero_or_powers_of_10[t]);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Returns the number of decimal digits in n. Leading zeros are not counted
|
||
|
// except for n == 0 in which case count_digits returns 1.
|
||
|
FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int {
|
||
|
#ifdef FMT_BUILTIN_CLZLL
|
||
|
if (!is_constant_evaluated() && !FMT_OPTIMIZE_SIZE) return do_count_digits(n);
|
||
|
#endif
|
||
|
return count_digits_fallback(n);
|
||
|
}
|
||
|
|
||
|
// Counts the number of digits in n. BITS = log2(radix).
|
||
|
template <int BITS, typename UInt>
|
||
|
FMT_CONSTEXPR auto count_digits(UInt n) -> int {
|
||
|
#ifdef FMT_BUILTIN_CLZ
|
||
|
if (!is_constant_evaluated() && num_bits<UInt>() == 32)
|
||
|
return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1;
|
||
|
#endif
|
||
|
// Lambda avoids unreachable code warnings from NVHPC.
|
||
|
return [](UInt m) {
|
||
|
int num_digits = 0;
|
||
|
do {
|
||
|
++num_digits;
|
||
|
} while ((m >>= BITS) != 0);
|
||
|
return num_digits;
|
||
|
}(n);
|
||
|
}
|
||
|
|
||
|
#ifdef FMT_BUILTIN_CLZ
|
||
|
// It is a separate function rather than a part of count_digits to workaround
|
||
|
// the lack of static constexpr in constexpr functions.
|
||
|
FMT_INLINE auto do_count_digits(uint32_t n) -> int {
|
||
|
// An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
|
||
|
// This increments the upper 32 bits (log10(T) - 1) when >= T is added.
|
||
|
# define FMT_INC(T) (((sizeof(#T) - 1ull) << 32) - T)
|
||
|
static constexpr uint64_t table[] = {
|
||
|
FMT_INC(0), FMT_INC(0), FMT_INC(0), // 8
|
||
|
FMT_INC(10), FMT_INC(10), FMT_INC(10), // 64
|
||
|
FMT_INC(100), FMT_INC(100), FMT_INC(100), // 512
|
||
|
FMT_INC(1000), FMT_INC(1000), FMT_INC(1000), // 4096
|
||
|
FMT_INC(10000), FMT_INC(10000), FMT_INC(10000), // 32k
|
||
|
FMT_INC(100000), FMT_INC(100000), FMT_INC(100000), // 256k
|
||
|
FMT_INC(1000000), FMT_INC(1000000), FMT_INC(1000000), // 2048k
|
||
|
FMT_INC(10000000), FMT_INC(10000000), FMT_INC(10000000), // 16M
|
||
|
FMT_INC(100000000), FMT_INC(100000000), FMT_INC(100000000), // 128M
|
||
|
FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000), // 1024M
|
||
|
FMT_INC(1000000000), FMT_INC(1000000000) // 4B
|
||
|
};
|
||
|
auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31];
|
||
|
return static_cast<int>((n + inc) >> 32);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Optional version of count_digits for better performance on 32-bit platforms.
|
||
|
FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int {
|
||
|
#ifdef FMT_BUILTIN_CLZ
|
||
|
if (!is_constant_evaluated() && !FMT_OPTIMIZE_SIZE) return do_count_digits(n);
|
||
|
#endif
|
||
|
return count_digits_fallback(n);
|
||
|
}
|
||
|
|
||
|
template <typename Int> constexpr auto digits10() noexcept -> int {
|
||
|
return std::numeric_limits<Int>::digits10;
|
||
|
}
|
||
|
template <> constexpr auto digits10<int128_opt>() noexcept -> int { return 38; }
|
||
|
template <> constexpr auto digits10<uint128_t>() noexcept -> int { return 38; }
|
||
|
|
||
|
template <typename Char> struct thousands_sep_result {
|
||
|
std::string grouping;
|
||
|
Char thousands_sep;
|
||
|
};
|
||
|
|
||
|
template <typename Char>
|
||
|
FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>;
|
||
|
template <typename Char>
|
||
|
inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> {
|
||
|
auto result = thousands_sep_impl<char>(loc);
|
||
|
return {result.grouping, Char(result.thousands_sep)};
|
||
|
}
|
||
|
template <>
|
||
|
inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> {
|
||
|
return thousands_sep_impl<wchar_t>(loc);
|
||
|
}
|
||
|
|
||
|
template <typename Char>
|
||
|
FMT_API auto decimal_point_impl(locale_ref loc) -> Char;
|
||
|
template <typename Char> inline auto decimal_point(locale_ref loc) -> Char {
|
||
|
return Char(decimal_point_impl<char>(loc));
|
||
|
}
|
||
|
template <> inline auto decimal_point(locale_ref loc) -> wchar_t {
|
||
|
return decimal_point_impl<wchar_t>(loc);
|
||
|
}
|
||
|
|
||
|
#ifndef FMT_HEADER_ONLY
|
||
|
FMT_BEGIN_EXPORT
|
||
|
extern template FMT_API auto thousands_sep_impl<char>(locale_ref)
|
||
|
-> thousands_sep_result<char>;
|
||
|
extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref)
|
||
|
-> thousands_sep_result<wchar_t>;
|
||
|
extern template FMT_API auto decimal_point_impl(locale_ref) -> char;
|
||
|
extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t;
|
||
|
FMT_END_EXPORT
|
||
|
#endif // FMT_HEADER_ONLY
|
||
|
|
||
|
// Compares two characters for equality.
|
||
|
template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool {
|
||
|
return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]);
|
||
|
}
|
||
|
inline auto equal2(const char* lhs, const char* rhs) -> bool {
|
||
|
return memcmp(lhs, rhs, 2) == 0;
|
||
|
}
|
||
|
|
||
|
// Writes a two-digit value to out.
|
||
|
template <typename Char>
|
||
|
FMT_CONSTEXPR20 FMT_INLINE void write2digits(Char* out, size_t value) {
|
||
|
if (!is_constant_evaluated() && std::is_same<Char, char>::value &&
|
||
|
!FMT_OPTIMIZE_SIZE) {
|
||
|
memcpy(out, digits2(value), 2);
|
||
|
return;
|
||
|
}
|
||
|
*out++ = static_cast<Char>('0' + value / 10);
|
||
|
*out = static_cast<Char>('0' + value % 10);
|
||
|
}
|
||
|
|
||
|
// Formats a decimal unsigned integer value writing to out pointing to a buffer
|
||
|
// of specified size. The caller must ensure that the buffer is large enough.
|
||
|
template <typename Char, typename UInt>
|
||
|
FMT_CONSTEXPR20 auto do_format_decimal(Char* out, UInt value, int size)
|
||
|
-> Char* {
|
||
|
FMT_ASSERT(size >= count_digits(value), "invalid digit count");
|
||
|
unsigned n = to_unsigned(size);
|
||
|
while (value >= 100) {
|
||
|
// Integer division is slow so do it for a group of two digits instead
|
||
|
// of for every digit. The idea comes from the talk by Alexandrescu
|
||
|
// "Three Optimization Tips for C++". See speed-test for a comparison.
|
||
|
n -= 2;
|
||
|
write2digits(out + n, static_cast<unsigned>(value % 100));
|
||
|
value /= 100;
|
||
|
}
|
||
|
if (value >= 10) {
|
||
|
n -= 2;
|
||
|
write2digits(out + n, static_cast<unsigned>(value));
|
||
|
} else {
|
||
|
out[--n] = static_cast<Char>('0' + value);
|
||
|
}
|
||
|
return out + n;
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename UInt>
|
||
|
FMT_CONSTEXPR FMT_INLINE auto format_decimal(Char* out, UInt value,
|
||
|
int num_digits) -> Char* {
|
||
|
do_format_decimal(out, value, num_digits);
|
||
|
return out + num_digits;
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename UInt, typename OutputIt,
|
||
|
FMT_ENABLE_IF(is_back_insert_iterator<OutputIt>::value)>
|
||
|
FMT_CONSTEXPR auto format_decimal(OutputIt out, UInt value, int num_digits)
|
||
|
-> OutputIt {
|
||
|
if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
|
||
|
do_format_decimal(ptr, value, num_digits);
|
||
|
return out;
|
||
|
}
|
||
|
// Buffer is large enough to hold all digits (digits10 + 1).
|
||
|
char buffer[digits10<UInt>() + 1];
|
||
|
if (is_constant_evaluated()) fill_n(buffer, sizeof(buffer), '\0');
|
||
|
do_format_decimal(buffer, value, num_digits);
|
||
|
return copy_noinline<Char>(buffer, buffer + num_digits, out);
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename UInt>
|
||
|
FMT_CONSTEXPR auto do_format_base2e(int base_bits, Char* out, UInt value,
|
||
|
int size, bool upper = false) -> Char* {
|
||
|
out += size;
|
||
|
do {
|
||
|
const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef";
|
||
|
unsigned digit = static_cast<unsigned>(value & ((1 << base_bits) - 1));
|
||
|
*--out = static_cast<Char>(base_bits < 4 ? static_cast<char>('0' + digit)
|
||
|
: digits[digit]);
|
||
|
} while ((value >>= base_bits) != 0);
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
// Formats an unsigned integer in the power of two base (binary, octal, hex).
|
||
|
template <typename Char, typename UInt>
|
||
|
FMT_CONSTEXPR auto format_base2e(int base_bits, Char* out, UInt value,
|
||
|
int num_digits, bool upper = false) -> Char* {
|
||
|
do_format_base2e(base_bits, out, value, num_digits, upper);
|
||
|
return out + num_digits;
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename UInt,
|
||
|
FMT_ENABLE_IF(is_back_insert_iterator<OutputIt>::value)>
|
||
|
FMT_CONSTEXPR inline auto format_base2e(int base_bits, OutputIt out, UInt value,
|
||
|
int num_digits, bool upper = false)
|
||
|
-> OutputIt {
|
||
|
if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
|
||
|
format_base2e(base_bits, ptr, value, num_digits, upper);
|
||
|
return out;
|
||
|
}
|
||
|
// Make buffer large enough for any base.
|
||
|
char buffer[num_bits<UInt>()];
|
||
|
if (is_constant_evaluated()) fill_n(buffer, sizeof(buffer), '\0');
|
||
|
format_base2e(base_bits, buffer, value, num_digits, upper);
|
||
|
return detail::copy_noinline<Char>(buffer, buffer + num_digits, out);
|
||
|
}
|
||
|
|
||
|
// A converter from UTF-8 to UTF-16.
|
||
|
class utf8_to_utf16 {
|
||
|
private:
|
||
|
basic_memory_buffer<wchar_t> buffer_;
|
||
|
|
||
|
public:
|
||
|
FMT_API explicit utf8_to_utf16(string_view s);
|
||
|
inline operator basic_string_view<wchar_t>() const {
|
||
|
return {&buffer_[0], size()};
|
||
|
}
|
||
|
inline auto size() const -> size_t { return buffer_.size() - 1; }
|
||
|
inline auto c_str() const -> const wchar_t* { return &buffer_[0]; }
|
||
|
inline auto str() const -> std::wstring { return {&buffer_[0], size()}; }
|
||
|
};
|
||
|
|
||
|
enum class to_utf8_error_policy { abort, replace };
|
||
|
|
||
|
// A converter from UTF-16/UTF-32 (host endian) to UTF-8.
|
||
|
template <typename WChar, typename Buffer = memory_buffer> class to_utf8 {
|
||
|
private:
|
||
|
Buffer buffer_;
|
||
|
|
||
|
public:
|
||
|
to_utf8() {}
|
||
|
explicit to_utf8(basic_string_view<WChar> s,
|
||
|
to_utf8_error_policy policy = to_utf8_error_policy::abort) {
|
||
|
static_assert(sizeof(WChar) == 2 || sizeof(WChar) == 4,
|
||
|
"Expect utf16 or utf32");
|
||
|
if (!convert(s, policy))
|
||
|
FMT_THROW(std::runtime_error(sizeof(WChar) == 2 ? "invalid utf16"
|
||
|
: "invalid utf32"));
|
||
|
}
|
||
|
operator string_view() const { return string_view(&buffer_[0], size()); }
|
||
|
auto size() const -> size_t { return buffer_.size() - 1; }
|
||
|
auto c_str() const -> const char* { return &buffer_[0]; }
|
||
|
auto str() const -> std::string { return std::string(&buffer_[0], size()); }
|
||
|
|
||
|
// Performs conversion returning a bool instead of throwing exception on
|
||
|
// conversion error. This method may still throw in case of memory allocation
|
||
|
// error.
|
||
|
auto convert(basic_string_view<WChar> s,
|
||
|
to_utf8_error_policy policy = to_utf8_error_policy::abort)
|
||
|
-> bool {
|
||
|
if (!convert(buffer_, s, policy)) return false;
|
||
|
buffer_.push_back(0);
|
||
|
return true;
|
||
|
}
|
||
|
static auto convert(Buffer& buf, basic_string_view<WChar> s,
|
||
|
to_utf8_error_policy policy = to_utf8_error_policy::abort)
|
||
|
-> bool {
|
||
|
for (auto p = s.begin(); p != s.end(); ++p) {
|
||
|
uint32_t c = static_cast<uint32_t>(*p);
|
||
|
if (sizeof(WChar) == 2 && c >= 0xd800 && c <= 0xdfff) {
|
||
|
// Handle a surrogate pair.
|
||
|
++p;
|
||
|
if (p == s.end() || (c & 0xfc00) != 0xd800 || (*p & 0xfc00) != 0xdc00) {
|
||
|
if (policy == to_utf8_error_policy::abort) return false;
|
||
|
buf.append(string_view("\xEF\xBF\xBD"));
|
||
|
--p;
|
||
|
continue;
|
||
|
} else {
|
||
|
c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00;
|
||
|
}
|
||
|
}
|
||
|
if (c < 0x80) {
|
||
|
buf.push_back(static_cast<char>(c));
|
||
|
} else if (c < 0x800) {
|
||
|
buf.push_back(static_cast<char>(0xc0 | (c >> 6)));
|
||
|
buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
|
||
|
} else if ((c >= 0x800 && c <= 0xd7ff) || (c >= 0xe000 && c <= 0xffff)) {
|
||
|
buf.push_back(static_cast<char>(0xe0 | (c >> 12)));
|
||
|
buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
|
||
|
buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
|
||
|
} else if (c >= 0x10000 && c <= 0x10ffff) {
|
||
|
buf.push_back(static_cast<char>(0xf0 | (c >> 18)));
|
||
|
buf.push_back(static_cast<char>(0x80 | ((c & 0x3ffff) >> 12)));
|
||
|
buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
|
||
|
buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
|
||
|
} else {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Computes 128-bit result of multiplication of two 64-bit unsigned integers.
|
||
|
inline auto umul128(uint64_t x, uint64_t y) noexcept -> uint128_fallback {
|
||
|
#if FMT_USE_INT128
|
||
|
auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
|
||
|
return {static_cast<uint64_t>(p >> 64), static_cast<uint64_t>(p)};
|
||
|
#elif defined(_MSC_VER) && defined(_M_X64)
|
||
|
auto hi = uint64_t();
|
||
|
auto lo = _umul128(x, y, &hi);
|
||
|
return {hi, lo};
|
||
|
#else
|
||
|
const uint64_t mask = static_cast<uint64_t>(max_value<uint32_t>());
|
||
|
|
||
|
uint64_t a = x >> 32;
|
||
|
uint64_t b = x & mask;
|
||
|
uint64_t c = y >> 32;
|
||
|
uint64_t d = y & mask;
|
||
|
|
||
|
uint64_t ac = a * c;
|
||
|
uint64_t bc = b * c;
|
||
|
uint64_t ad = a * d;
|
||
|
uint64_t bd = b * d;
|
||
|
|
||
|
uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);
|
||
|
|
||
|
return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32),
|
||
|
(intermediate << 32) + (bd & mask)};
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
namespace dragonbox {
|
||
|
// Computes floor(log10(pow(2, e))) for e in [-2620, 2620] using the method from
|
||
|
// https://fmt.dev/papers/Dragonbox.pdf#page=28, section 6.1.
|
||
|
inline auto floor_log10_pow2(int e) noexcept -> int {
|
||
|
FMT_ASSERT(e <= 2620 && e >= -2620, "too large exponent");
|
||
|
static_assert((-1 >> 1) == -1, "right shift is not arithmetic");
|
||
|
return (e * 315653) >> 20;
|
||
|
}
|
||
|
|
||
|
inline auto floor_log2_pow10(int e) noexcept -> int {
|
||
|
FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
|
||
|
return (e * 1741647) >> 19;
|
||
|
}
|
||
|
|
||
|
// Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
|
||
|
inline auto umul128_upper64(uint64_t x, uint64_t y) noexcept -> uint64_t {
|
||
|
#if FMT_USE_INT128
|
||
|
auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
|
||
|
return static_cast<uint64_t>(p >> 64);
|
||
|
#elif defined(_MSC_VER) && defined(_M_X64)
|
||
|
return __umulh(x, y);
|
||
|
#else
|
||
|
return umul128(x, y).high();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a
|
||
|
// 128-bit unsigned integer.
|
||
|
inline auto umul192_upper128(uint64_t x, uint128_fallback y) noexcept
|
||
|
-> uint128_fallback {
|
||
|
uint128_fallback r = umul128(x, y.high());
|
||
|
r += umul128_upper64(x, y.low());
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
FMT_API auto get_cached_power(int k) noexcept -> uint128_fallback;
|
||
|
|
||
|
// Type-specific information that Dragonbox uses.
|
||
|
template <typename T, typename Enable = void> struct float_info;
|
||
|
|
||
|
template <> struct float_info<float> {
|
||
|
using carrier_uint = uint32_t;
|
||
|
static const int exponent_bits = 8;
|
||
|
static const int kappa = 1;
|
||
|
static const int big_divisor = 100;
|
||
|
static const int small_divisor = 10;
|
||
|
static const int min_k = -31;
|
||
|
static const int max_k = 46;
|
||
|
static const int shorter_interval_tie_lower_threshold = -35;
|
||
|
static const int shorter_interval_tie_upper_threshold = -35;
|
||
|
};
|
||
|
|
||
|
template <> struct float_info<double> {
|
||
|
using carrier_uint = uint64_t;
|
||
|
static const int exponent_bits = 11;
|
||
|
static const int kappa = 2;
|
||
|
static const int big_divisor = 1000;
|
||
|
static const int small_divisor = 100;
|
||
|
static const int min_k = -292;
|
||
|
static const int max_k = 341;
|
||
|
static const int shorter_interval_tie_lower_threshold = -77;
|
||
|
static const int shorter_interval_tie_upper_threshold = -77;
|
||
|
};
|
||
|
|
||
|
// An 80- or 128-bit floating point number.
|
||
|
template <typename T>
|
||
|
struct float_info<T, enable_if_t<std::numeric_limits<T>::digits == 64 ||
|
||
|
std::numeric_limits<T>::digits == 113 ||
|
||
|
is_float128<T>::value>> {
|
||
|
using carrier_uint = detail::uint128_t;
|
||
|
static const int exponent_bits = 15;
|
||
|
};
|
||
|
|
||
|
// A double-double floating point number.
|
||
|
template <typename T>
|
||
|
struct float_info<T, enable_if_t<is_double_double<T>::value>> {
|
||
|
using carrier_uint = detail::uint128_t;
|
||
|
};
|
||
|
|
||
|
template <typename T> struct decimal_fp {
|
||
|
using significand_type = typename float_info<T>::carrier_uint;
|
||
|
significand_type significand;
|
||
|
int exponent;
|
||
|
};
|
||
|
|
||
|
template <typename T> FMT_API auto to_decimal(T x) noexcept -> decimal_fp<T>;
|
||
|
} // namespace dragonbox
|
||
|
|
||
|
// Returns true iff Float has the implicit bit which is not stored.
|
||
|
template <typename Float> constexpr auto has_implicit_bit() -> bool {
|
||
|
// An 80-bit FP number has a 64-bit significand an no implicit bit.
|
||
|
return std::numeric_limits<Float>::digits != 64;
|
||
|
}
|
||
|
|
||
|
// Returns the number of significand bits stored in Float. The implicit bit is
|
||
|
// not counted since it is not stored.
|
||
|
template <typename Float> constexpr auto num_significand_bits() -> int {
|
||
|
// std::numeric_limits may not support __float128.
|
||
|
return is_float128<Float>() ? 112
|
||
|
: (std::numeric_limits<Float>::digits -
|
||
|
(has_implicit_bit<Float>() ? 1 : 0));
|
||
|
}
|
||
|
|
||
|
template <typename Float>
|
||
|
constexpr auto exponent_mask() ->
|
||
|
typename dragonbox::float_info<Float>::carrier_uint {
|
||
|
using float_uint = typename dragonbox::float_info<Float>::carrier_uint;
|
||
|
return ((float_uint(1) << dragonbox::float_info<Float>::exponent_bits) - 1)
|
||
|
<< num_significand_bits<Float>();
|
||
|
}
|
||
|
template <typename Float> constexpr auto exponent_bias() -> int {
|
||
|
// std::numeric_limits may not support __float128.
|
||
|
return is_float128<Float>() ? 16383
|
||
|
: std::numeric_limits<Float>::max_exponent - 1;
|
||
|
}
|
||
|
|
||
|
// Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
|
||
|
template <typename Char, typename OutputIt>
|
||
|
FMT_CONSTEXPR auto write_exponent(int exp, OutputIt out) -> OutputIt {
|
||
|
FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range");
|
||
|
if (exp < 0) {
|
||
|
*out++ = static_cast<Char>('-');
|
||
|
exp = -exp;
|
||
|
} else {
|
||
|
*out++ = static_cast<Char>('+');
|
||
|
}
|
||
|
auto uexp = static_cast<uint32_t>(exp);
|
||
|
if (is_constant_evaluated()) {
|
||
|
if (uexp < 10) *out++ = '0';
|
||
|
return format_decimal<Char>(out, uexp, count_digits(uexp));
|
||
|
}
|
||
|
if (uexp >= 100u) {
|
||
|
const char* top = digits2(uexp / 100);
|
||
|
if (uexp >= 1000u) *out++ = static_cast<Char>(top[0]);
|
||
|
*out++ = static_cast<Char>(top[1]);
|
||
|
uexp %= 100;
|
||
|
}
|
||
|
const char* d = digits2(uexp);
|
||
|
*out++ = static_cast<Char>(d[0]);
|
||
|
*out++ = static_cast<Char>(d[1]);
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
// A floating-point number f * pow(2, e) where F is an unsigned type.
|
||
|
template <typename F> struct basic_fp {
|
||
|
F f;
|
||
|
int e;
|
||
|
|
||
|
static constexpr const int num_significand_bits =
|
||
|
static_cast<int>(sizeof(F) * num_bits<unsigned char>());
|
||
|
|
||
|
constexpr basic_fp() : f(0), e(0) {}
|
||
|
constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
|
||
|
|
||
|
// Constructs fp from an IEEE754 floating-point number.
|
||
|
template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); }
|
||
|
|
||
|
// Assigns n to this and return true iff predecessor is closer than successor.
|
||
|
template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
|
||
|
FMT_CONSTEXPR auto assign(Float n) -> bool {
|
||
|
static_assert(std::numeric_limits<Float>::digits <= 113, "unsupported FP");
|
||
|
// Assume Float is in the format [sign][exponent][significand].
|
||
|
using carrier_uint = typename dragonbox::float_info<Float>::carrier_uint;
|
||
|
const auto num_float_significand_bits =
|
||
|
detail::num_significand_bits<Float>();
|
||
|
const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
|
||
|
const auto significand_mask = implicit_bit - 1;
|
||
|
auto u = bit_cast<carrier_uint>(n);
|
||
|
f = static_cast<F>(u & significand_mask);
|
||
|
auto biased_e = static_cast<int>((u & exponent_mask<Float>()) >>
|
||
|
num_float_significand_bits);
|
||
|
// The predecessor is closer if n is a normalized power of 2 (f == 0)
|
||
|
// other than the smallest normalized number (biased_e > 1).
|
||
|
auto is_predecessor_closer = f == 0 && biased_e > 1;
|
||
|
if (biased_e == 0)
|
||
|
biased_e = 1; // Subnormals use biased exponent 1 (min exponent).
|
||
|
else if (has_implicit_bit<Float>())
|
||
|
f += static_cast<F>(implicit_bit);
|
||
|
e = biased_e - exponent_bias<Float>() - num_float_significand_bits;
|
||
|
if (!has_implicit_bit<Float>()) ++e;
|
||
|
return is_predecessor_closer;
|
||
|
}
|
||
|
|
||
|
template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
|
||
|
FMT_CONSTEXPR auto assign(Float n) -> bool {
|
||
|
static_assert(std::numeric_limits<double>::is_iec559, "unsupported FP");
|
||
|
return assign(static_cast<double>(n));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
using fp = basic_fp<unsigned long long>;
|
||
|
|
||
|
// Normalizes the value converted from double and multiplied by (1 << SHIFT).
|
||
|
template <int SHIFT = 0, typename F>
|
||
|
FMT_CONSTEXPR auto normalize(basic_fp<F> value) -> basic_fp<F> {
|
||
|
// Handle subnormals.
|
||
|
const auto implicit_bit = F(1) << num_significand_bits<double>();
|
||
|
const auto shifted_implicit_bit = implicit_bit << SHIFT;
|
||
|
while ((value.f & shifted_implicit_bit) == 0) {
|
||
|
value.f <<= 1;
|
||
|
--value.e;
|
||
|
}
|
||
|
// Subtract 1 to account for hidden bit.
|
||
|
const auto offset = basic_fp<F>::num_significand_bits -
|
||
|
num_significand_bits<double>() - SHIFT - 1;
|
||
|
value.f <<= offset;
|
||
|
value.e -= offset;
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
|
||
|
FMT_CONSTEXPR inline auto multiply(uint64_t lhs, uint64_t rhs) -> uint64_t {
|
||
|
#if FMT_USE_INT128
|
||
|
auto product = static_cast<__uint128_t>(lhs) * rhs;
|
||
|
auto f = static_cast<uint64_t>(product >> 64);
|
||
|
return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
|
||
|
#else
|
||
|
// Multiply 32-bit parts of significands.
|
||
|
uint64_t mask = (1ULL << 32) - 1;
|
||
|
uint64_t a = lhs >> 32, b = lhs & mask;
|
||
|
uint64_t c = rhs >> 32, d = rhs & mask;
|
||
|
uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
|
||
|
// Compute mid 64-bit of result and round.
|
||
|
uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
|
||
|
return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
FMT_CONSTEXPR inline auto operator*(fp x, fp y) -> fp {
|
||
|
return {multiply(x.f, y.f), x.e + y.e + 64};
|
||
|
}
|
||
|
|
||
|
template <typename T, bool doublish = num_bits<T>() == num_bits<double>()>
|
||
|
using convert_float_result =
|
||
|
conditional_t<std::is_same<T, float>::value || doublish, double, T>;
|
||
|
|
||
|
template <typename T>
|
||
|
constexpr auto convert_float(T value) -> convert_float_result<T> {
|
||
|
return static_cast<convert_float_result<T>>(value);
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt>
|
||
|
FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n,
|
||
|
const basic_specs& specs) -> OutputIt {
|
||
|
auto fill_size = specs.fill_size();
|
||
|
if (fill_size == 1) return detail::fill_n(it, n, specs.fill_unit<Char>());
|
||
|
if (const Char* data = specs.fill<Char>()) {
|
||
|
for (size_t i = 0; i < n; ++i) it = copy<Char>(data, data + fill_size, it);
|
||
|
}
|
||
|
return it;
|
||
|
}
|
||
|
|
||
|
// Writes the output of f, padded according to format specifications in specs.
|
||
|
// size: output size in code units.
|
||
|
// width: output display width in (terminal) column positions.
|
||
|
template <typename Char, align default_align = align::left, typename OutputIt,
|
||
|
typename F>
|
||
|
FMT_CONSTEXPR auto write_padded(OutputIt out, const format_specs& specs,
|
||
|
size_t size, size_t width, F&& f) -> OutputIt {
|
||
|
static_assert(default_align == align::left || default_align == align::right,
|
||
|
"");
|
||
|
unsigned spec_width = to_unsigned(specs.width);
|
||
|
size_t padding = spec_width > width ? spec_width - width : 0;
|
||
|
// Shifts are encoded as string literals because static constexpr is not
|
||
|
// supported in constexpr functions.
|
||
|
auto* shifts =
|
||
|
default_align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01";
|
||
|
size_t left_padding = padding >> shifts[static_cast<int>(specs.align())];
|
||
|
size_t right_padding = padding - left_padding;
|
||
|
auto it = reserve(out, size + padding * specs.fill_size());
|
||
|
if (left_padding != 0) it = fill<Char>(it, left_padding, specs);
|
||
|
it = f(it);
|
||
|
if (right_padding != 0) it = fill<Char>(it, right_padding, specs);
|
||
|
return base_iterator(out, it);
|
||
|
}
|
||
|
|
||
|
template <typename Char, align default_align = align::left, typename OutputIt,
|
||
|
typename F>
|
||
|
constexpr auto write_padded(OutputIt out, const format_specs& specs,
|
||
|
size_t size, F&& f) -> OutputIt {
|
||
|
return write_padded<Char, default_align>(out, specs, size, size, f);
|
||
|
}
|
||
|
|
||
|
template <typename Char, align default_align = align::left, typename OutputIt>
|
||
|
FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes,
|
||
|
const format_specs& specs = {}) -> OutputIt {
|
||
|
return write_padded<Char, default_align>(
|
||
|
out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) {
|
||
|
const char* data = bytes.data();
|
||
|
return copy<Char>(data, data + bytes.size(), it);
|
||
|
});
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename UIntPtr>
|
||
|
auto write_ptr(OutputIt out, UIntPtr value, const format_specs* specs)
|
||
|
-> OutputIt {
|
||
|
int num_digits = count_digits<4>(value);
|
||
|
auto size = to_unsigned(num_digits) + size_t(2);
|
||
|
auto write = [=](reserve_iterator<OutputIt> it) {
|
||
|
*it++ = static_cast<Char>('0');
|
||
|
*it++ = static_cast<Char>('x');
|
||
|
return format_base2e<Char>(4, it, value, num_digits);
|
||
|
};
|
||
|
return specs ? write_padded<Char, align::right>(out, *specs, size, write)
|
||
|
: base_iterator(out, write(reserve(out, size)));
|
||
|
}
|
||
|
|
||
|
// Returns true iff the code point cp is printable.
|
||
|
FMT_API auto is_printable(uint32_t cp) -> bool;
|
||
|
|
||
|
inline auto needs_escape(uint32_t cp) -> bool {
|
||
|
if (cp < 0x20 || cp == 0x7f || cp == '"' || cp == '\\') return true;
|
||
|
if (const_check(FMT_OPTIMIZE_SIZE > 1)) return false;
|
||
|
return !is_printable(cp);
|
||
|
}
|
||
|
|
||
|
template <typename Char> struct find_escape_result {
|
||
|
const Char* begin;
|
||
|
const Char* end;
|
||
|
uint32_t cp;
|
||
|
};
|
||
|
|
||
|
template <typename Char>
|
||
|
auto find_escape(const Char* begin, const Char* end)
|
||
|
-> find_escape_result<Char> {
|
||
|
for (; begin != end; ++begin) {
|
||
|
uint32_t cp = static_cast<unsigned_char<Char>>(*begin);
|
||
|
if (const_check(sizeof(Char) == 1) && cp >= 0x80) continue;
|
||
|
if (needs_escape(cp)) return {begin, begin + 1, cp};
|
||
|
}
|
||
|
return {begin, nullptr, 0};
|
||
|
}
|
||
|
|
||
|
inline auto find_escape(const char* begin, const char* end)
|
||
|
-> find_escape_result<char> {
|
||
|
if (const_check(!use_utf8)) return find_escape<char>(begin, end);
|
||
|
auto result = find_escape_result<char>{end, nullptr, 0};
|
||
|
for_each_codepoint(string_view(begin, to_unsigned(end - begin)),
|
||
|
[&](uint32_t cp, string_view sv) {
|
||
|
if (needs_escape(cp)) {
|
||
|
result = {sv.begin(), sv.end(), cp};
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
});
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template <size_t width, typename Char, typename OutputIt>
|
||
|
auto write_codepoint(OutputIt out, char prefix, uint32_t cp) -> OutputIt {
|
||
|
*out++ = static_cast<Char>('\\');
|
||
|
*out++ = static_cast<Char>(prefix);
|
||
|
Char buf[width];
|
||
|
fill_n(buf, width, static_cast<Char>('0'));
|
||
|
format_base2e(4, buf, cp, width);
|
||
|
return copy<Char>(buf, buf + width, out);
|
||
|
}
|
||
|
|
||
|
template <typename OutputIt, typename Char>
|
||
|
auto write_escaped_cp(OutputIt out, const find_escape_result<Char>& escape)
|
||
|
-> OutputIt {
|
||
|
auto c = static_cast<Char>(escape.cp);
|
||
|
switch (escape.cp) {
|
||
|
case '\n':
|
||
|
*out++ = static_cast<Char>('\\');
|
||
|
c = static_cast<Char>('n');
|
||
|
break;
|
||
|
case '\r':
|
||
|
*out++ = static_cast<Char>('\\');
|
||
|
c = static_cast<Char>('r');
|
||
|
break;
|
||
|
case '\t':
|
||
|
*out++ = static_cast<Char>('\\');
|
||
|
c = static_cast<Char>('t');
|
||
|
break;
|
||
|
case '"': FMT_FALLTHROUGH;
|
||
|
case '\'': FMT_FALLTHROUGH;
|
||
|
case '\\': *out++ = static_cast<Char>('\\'); break;
|
||
|
default:
|
||
|
if (escape.cp < 0x100) return write_codepoint<2, Char>(out, 'x', escape.cp);
|
||
|
if (escape.cp < 0x10000)
|
||
|
return write_codepoint<4, Char>(out, 'u', escape.cp);
|
||
|
if (escape.cp < 0x110000)
|
||
|
return write_codepoint<8, Char>(out, 'U', escape.cp);
|
||
|
for (Char escape_char : basic_string_view<Char>(
|
||
|
escape.begin, to_unsigned(escape.end - escape.begin))) {
|
||
|
out = write_codepoint<2, Char>(out, 'x',
|
||
|
static_cast<uint32_t>(escape_char) & 0xFF);
|
||
|
}
|
||
|
return out;
|
||
|
}
|
||
|
*out++ = c;
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt>
|
||
|
auto write_escaped_string(OutputIt out, basic_string_view<Char> str)
|
||
|
-> OutputIt {
|
||
|
*out++ = static_cast<Char>('"');
|
||
|
auto begin = str.begin(), end = str.end();
|
||
|
do {
|
||
|
auto escape = find_escape(begin, end);
|
||
|
out = copy<Char>(begin, escape.begin, out);
|
||
|
begin = escape.end;
|
||
|
if (!begin) break;
|
||
|
out = write_escaped_cp<OutputIt, Char>(out, escape);
|
||
|
} while (begin != end);
|
||
|
*out++ = static_cast<Char>('"');
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt>
|
||
|
auto write_escaped_char(OutputIt out, Char v) -> OutputIt {
|
||
|
Char v_array[1] = {v};
|
||
|
*out++ = static_cast<Char>('\'');
|
||
|
if ((needs_escape(static_cast<uint32_t>(v)) && v != static_cast<Char>('"')) ||
|
||
|
v == static_cast<Char>('\'')) {
|
||
|
out = write_escaped_cp(out,
|
||
|
find_escape_result<Char>{v_array, v_array + 1,
|
||
|
static_cast<uint32_t>(v)});
|
||
|
} else {
|
||
|
*out++ = v;
|
||
|
}
|
||
|
*out++ = static_cast<Char>('\'');
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt>
|
||
|
FMT_CONSTEXPR auto write_char(OutputIt out, Char value,
|
||
|
const format_specs& specs) -> OutputIt {
|
||
|
bool is_debug = specs.type() == presentation_type::debug;
|
||
|
return write_padded<Char>(out, specs, 1, [=](reserve_iterator<OutputIt> it) {
|
||
|
if (is_debug) return write_escaped_char(it, value);
|
||
|
*it++ = value;
|
||
|
return it;
|
||
|
});
|
||
|
}
|
||
|
template <typename Char, typename OutputIt>
|
||
|
FMT_CONSTEXPR auto write(OutputIt out, Char value, const format_specs& specs,
|
||
|
locale_ref loc = {}) -> OutputIt {
|
||
|
// char is formatted as unsigned char for consistency across platforms.
|
||
|
using unsigned_type =
|
||
|
conditional_t<std::is_same<Char, char>::value, unsigned char, unsigned>;
|
||
|
return check_char_specs(specs)
|
||
|
? write_char<Char>(out, value, specs)
|
||
|
: write<Char>(out, static_cast<unsigned_type>(value), specs, loc);
|
||
|
}
|
||
|
|
||
|
template <typename Char> class digit_grouping {
|
||
|
private:
|
||
|
std::string grouping_;
|
||
|
std::basic_string<Char> thousands_sep_;
|
||
|
|
||
|
struct next_state {
|
||
|
std::string::const_iterator group;
|
||
|
int pos;
|
||
|
};
|
||
|
auto initial_state() const -> next_state { return {grouping_.begin(), 0}; }
|
||
|
|
||
|
// Returns the next digit group separator position.
|
||
|
auto next(next_state& state) const -> int {
|
||
|
if (thousands_sep_.empty()) return max_value<int>();
|
||
|
if (state.group == grouping_.end()) return state.pos += grouping_.back();
|
||
|
if (*state.group <= 0 || *state.group == max_value<char>())
|
||
|
return max_value<int>();
|
||
|
state.pos += *state.group++;
|
||
|
return state.pos;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
explicit digit_grouping(locale_ref loc, bool localized = true) {
|
||
|
if (!localized) return;
|
||
|
auto sep = thousands_sep<Char>(loc);
|
||
|
grouping_ = sep.grouping;
|
||
|
if (sep.thousands_sep) thousands_sep_.assign(1, sep.thousands_sep);
|
||
|
}
|
||
|
digit_grouping(std::string grouping, std::basic_string<Char> sep)
|
||
|
: grouping_(std::move(grouping)), thousands_sep_(std::move(sep)) {}
|
||
|
|
||
|
auto has_separator() const -> bool { return !thousands_sep_.empty(); }
|
||
|
|
||
|
auto count_separators(int num_digits) const -> int {
|
||
|
int count = 0;
|
||
|
auto state = initial_state();
|
||
|
while (num_digits > next(state)) ++count;
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
// Applies grouping to digits and write the output to out.
|
||
|
template <typename Out, typename C>
|
||
|
auto apply(Out out, basic_string_view<C> digits) const -> Out {
|
||
|
auto num_digits = static_cast<int>(digits.size());
|
||
|
auto separators = basic_memory_buffer<int>();
|
||
|
separators.push_back(0);
|
||
|
auto state = initial_state();
|
||
|
while (int i = next(state)) {
|
||
|
if (i >= num_digits) break;
|
||
|
separators.push_back(i);
|
||
|
}
|
||
|
for (int i = 0, sep_index = static_cast<int>(separators.size() - 1);
|
||
|
i < num_digits; ++i) {
|
||
|
if (num_digits - i == separators[sep_index]) {
|
||
|
out = copy<Char>(thousands_sep_.data(),
|
||
|
thousands_sep_.data() + thousands_sep_.size(), out);
|
||
|
--sep_index;
|
||
|
}
|
||
|
*out++ = static_cast<Char>(digits[to_unsigned(i)]);
|
||
|
}
|
||
|
return out;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) {
|
||
|
prefix |= prefix != 0 ? value << 8 : value;
|
||
|
prefix += (1u + (value > 0xff ? 1 : 0)) << 24;
|
||
|
}
|
||
|
|
||
|
// Writes a decimal integer with digit grouping.
|
||
|
template <typename OutputIt, typename UInt, typename Char>
|
||
|
auto write_int(OutputIt out, UInt value, unsigned prefix,
|
||
|
const format_specs& specs, const digit_grouping<Char>& grouping)
|
||
|
-> OutputIt {
|
||
|
static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, "");
|
||
|
int num_digits = 0;
|
||
|
auto buffer = memory_buffer();
|
||
|
switch (specs.type()) {
|
||
|
default: FMT_ASSERT(false, ""); FMT_FALLTHROUGH;
|
||
|
case presentation_type::none:
|
||
|
case presentation_type::dec:
|
||
|
num_digits = count_digits(value);
|
||
|
format_decimal<char>(appender(buffer), value, num_digits);
|
||
|
break;
|
||
|
case presentation_type::hex:
|
||
|
if (specs.alt())
|
||
|
prefix_append(prefix, unsigned(specs.upper() ? 'X' : 'x') << 8 | '0');
|
||
|
num_digits = count_digits<4>(value);
|
||
|
format_base2e<char>(4, appender(buffer), value, num_digits, specs.upper());
|
||
|
break;
|
||
|
case presentation_type::oct:
|
||
|
num_digits = count_digits<3>(value);
|
||
|
// Octal prefix '0' is counted as a digit, so only add it if precision
|
||
|
// is not greater than the number of digits.
|
||
|
if (specs.alt() && specs.precision <= num_digits && value != 0)
|
||
|
prefix_append(prefix, '0');
|
||
|
format_base2e<char>(3, appender(buffer), value, num_digits);
|
||
|
break;
|
||
|
case presentation_type::bin:
|
||
|
if (specs.alt())
|
||
|
prefix_append(prefix, unsigned(specs.upper() ? 'B' : 'b') << 8 | '0');
|
||
|
num_digits = count_digits<1>(value);
|
||
|
format_base2e<char>(1, appender(buffer), value, num_digits);
|
||
|
break;
|
||
|
case presentation_type::chr:
|
||
|
return write_char<Char>(out, static_cast<Char>(value), specs);
|
||
|
}
|
||
|
|
||
|
unsigned size = (prefix != 0 ? prefix >> 24 : 0) + to_unsigned(num_digits) +
|
||
|
to_unsigned(grouping.count_separators(num_digits));
|
||
|
return write_padded<Char, align::right>(
|
||
|
out, specs, size, size, [&](reserve_iterator<OutputIt> it) {
|
||
|
for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
|
||
|
*it++ = static_cast<Char>(p & 0xff);
|
||
|
return grouping.apply(it, string_view(buffer.data(), buffer.size()));
|
||
|
});
|
||
|
}
|
||
|
|
||
|
#if FMT_USE_LOCALE
|
||
|
// Writes a localized value.
|
||
|
FMT_API auto write_loc(appender out, loc_value value, const format_specs& specs,
|
||
|
locale_ref loc) -> bool;
|
||
|
#endif
|
||
|
template <typename OutputIt>
|
||
|
inline auto write_loc(OutputIt, const loc_value&, const format_specs&,
|
||
|
locale_ref) -> bool {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
template <typename UInt> struct write_int_arg {
|
||
|
UInt abs_value;
|
||
|
unsigned prefix;
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
FMT_CONSTEXPR auto make_write_int_arg(T value, sign s)
|
||
|
-> write_int_arg<uint32_or_64_or_128_t<T>> {
|
||
|
auto prefix = 0u;
|
||
|
auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
|
||
|
if (is_negative(value)) {
|
||
|
prefix = 0x01000000 | '-';
|
||
|
abs_value = 0 - abs_value;
|
||
|
} else {
|
||
|
constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+',
|
||
|
0x1000000u | ' '};
|
||
|
prefix = prefixes[static_cast<int>(s)];
|
||
|
}
|
||
|
return {abs_value, prefix};
|
||
|
}
|
||
|
|
||
|
template <typename Char = char> struct loc_writer {
|
||
|
basic_appender<Char> out;
|
||
|
const format_specs& specs;
|
||
|
std::basic_string<Char> sep;
|
||
|
std::string grouping;
|
||
|
std::basic_string<Char> decimal_point;
|
||
|
|
||
|
template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
|
||
|
auto operator()(T value) -> bool {
|
||
|
auto arg = make_write_int_arg(value, specs.sign());
|
||
|
write_int(out, static_cast<uint64_or_128_t<T>>(arg.abs_value), arg.prefix,
|
||
|
specs, digit_grouping<Char>(grouping, sep));
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
|
||
|
auto operator()(T) -> bool {
|
||
|
return false;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Size and padding computation separate from write_int to avoid template bloat.
|
||
|
struct size_padding {
|
||
|
unsigned size;
|
||
|
unsigned padding;
|
||
|
|
||
|
FMT_CONSTEXPR size_padding(int num_digits, unsigned prefix,
|
||
|
const format_specs& specs)
|
||
|
: size((prefix >> 24) + to_unsigned(num_digits)), padding(0) {
|
||
|
if (specs.align() == align::numeric) {
|
||
|
auto width = to_unsigned(specs.width);
|
||
|
if (width > size) {
|
||
|
padding = width - size;
|
||
|
size = width;
|
||
|
}
|
||
|
} else if (specs.precision > num_digits) {
|
||
|
size = (prefix >> 24) + to_unsigned(specs.precision);
|
||
|
padding = to_unsigned(specs.precision - num_digits);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename T>
|
||
|
FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg,
|
||
|
const format_specs& specs) -> OutputIt {
|
||
|
static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, "");
|
||
|
|
||
|
constexpr int buffer_size = num_bits<T>();
|
||
|
char buffer[buffer_size];
|
||
|
if (is_constant_evaluated()) fill_n(buffer, buffer_size, '\0');
|
||
|
const char* begin = nullptr;
|
||
|
const char* end = buffer + buffer_size;
|
||
|
|
||
|
auto abs_value = arg.abs_value;
|
||
|
auto prefix = arg.prefix;
|
||
|
switch (specs.type()) {
|
||
|
default: FMT_ASSERT(false, ""); FMT_FALLTHROUGH;
|
||
|
case presentation_type::none:
|
||
|
case presentation_type::dec:
|
||
|
begin = do_format_decimal(buffer, abs_value, buffer_size);
|
||
|
break;
|
||
|
case presentation_type::hex:
|
||
|
begin = do_format_base2e(4, buffer, abs_value, buffer_size, specs.upper());
|
||
|
if (specs.alt())
|
||
|
prefix_append(prefix, unsigned(specs.upper() ? 'X' : 'x') << 8 | '0');
|
||
|
break;
|
||
|
case presentation_type::oct: {
|
||
|
begin = do_format_base2e(3, buffer, abs_value, buffer_size);
|
||
|
// Octal prefix '0' is counted as a digit, so only add it if precision
|
||
|
// is not greater than the number of digits.
|
||
|
auto num_digits = end - begin;
|
||
|
if (specs.alt() && specs.precision <= num_digits && abs_value != 0)
|
||
|
prefix_append(prefix, '0');
|
||
|
break;
|
||
|
}
|
||
|
case presentation_type::bin:
|
||
|
begin = do_format_base2e(1, buffer, abs_value, buffer_size);
|
||
|
if (specs.alt())
|
||
|
prefix_append(prefix, unsigned(specs.upper() ? 'B' : 'b') << 8 | '0');
|
||
|
break;
|
||
|
case presentation_type::chr:
|
||
|
return write_char<Char>(out, static_cast<Char>(abs_value), specs);
|
||
|
}
|
||
|
|
||
|
// Write an integer in the format
|
||
|
// <left-padding><prefix><numeric-padding><digits><right-padding>
|
||
|
// prefix contains chars in three lower bytes and the size in the fourth byte.
|
||
|
int num_digits = static_cast<int>(end - begin);
|
||
|
// Slightly faster check for specs.width == 0 && specs.precision == -1.
|
||
|
if ((specs.width | (specs.precision + 1)) == 0) {
|
||
|
auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24));
|
||
|
for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
|
||
|
*it++ = static_cast<Char>(p & 0xff);
|
||
|
return base_iterator(out, copy<Char>(begin, end, it));
|
||
|
}
|
||
|
auto sp = size_padding(num_digits, prefix, specs);
|
||
|
unsigned padding = sp.padding;
|
||
|
return write_padded<Char, align::right>(
|
||
|
out, specs, sp.size, [=](reserve_iterator<OutputIt> it) {
|
||
|
for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
|
||
|
*it++ = static_cast<Char>(p & 0xff);
|
||
|
it = detail::fill_n(it, padding, static_cast<Char>('0'));
|
||
|
return copy<Char>(begin, end, it);
|
||
|
});
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename T>
|
||
|
FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline(OutputIt out,
|
||
|
write_int_arg<T> arg,
|
||
|
const format_specs& specs)
|
||
|
-> OutputIt {
|
||
|
return write_int<Char>(out, arg, specs);
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename T,
|
||
|
FMT_ENABLE_IF(is_integral<T>::value &&
|
||
|
!std::is_same<T, bool>::value &&
|
||
|
!std::is_same<T, Char>::value)>
|
||
|
FMT_CONSTEXPR FMT_INLINE auto write(basic_appender<Char> out, T value,
|
||
|
const format_specs& specs, locale_ref loc)
|
||
|
-> basic_appender<Char> {
|
||
|
if (specs.localized() && write_loc(out, value, specs, loc)) return out;
|
||
|
return write_int_noinline<Char>(out, make_write_int_arg(value, specs.sign()),
|
||
|
specs);
|
||
|
}
|
||
|
|
||
|
// An inlined version of write used in format string compilation.
|
||
|
template <typename Char, typename OutputIt, typename T,
|
||
|
FMT_ENABLE_IF(is_integral<T>::value &&
|
||
|
!std::is_same<T, bool>::value &&
|
||
|
!std::is_same<T, Char>::value &&
|
||
|
!std::is_same<OutputIt, basic_appender<Char>>::value)>
|
||
|
FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
|
||
|
const format_specs& specs, locale_ref loc)
|
||
|
-> OutputIt {
|
||
|
if (specs.localized() && write_loc(out, value, specs, loc)) return out;
|
||
|
return write_int<Char>(out, make_write_int_arg(value, specs.sign()), specs);
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt>
|
||
|
FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s,
|
||
|
const format_specs& specs) -> OutputIt {
|
||
|
auto data = s.data();
|
||
|
auto size = s.size();
|
||
|
if (specs.precision >= 0 && to_unsigned(specs.precision) < size)
|
||
|
size = code_point_index(s, to_unsigned(specs.precision));
|
||
|
|
||
|
bool is_debug = specs.type() == presentation_type::debug;
|
||
|
if (is_debug) {
|
||
|
auto buf = counting_buffer<Char>();
|
||
|
write_escaped_string(basic_appender<Char>(buf), s);
|
||
|
size = buf.count();
|
||
|
}
|
||
|
|
||
|
size_t width = 0;
|
||
|
if (specs.width != 0) {
|
||
|
width =
|
||
|
is_debug ? size : compute_width(basic_string_view<Char>(data, size));
|
||
|
}
|
||
|
return write_padded<Char>(
|
||
|
out, specs, size, width, [=](reserve_iterator<OutputIt> it) {
|
||
|
return is_debug ? write_escaped_string(it, s)
|
||
|
: copy<Char>(data, data + size, it);
|
||
|
});
|
||
|
}
|
||
|
template <typename Char, typename OutputIt>
|
||
|
FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s,
|
||
|
const format_specs& specs, locale_ref) -> OutputIt {
|
||
|
return write<Char>(out, s, specs);
|
||
|
}
|
||
|
template <typename Char, typename OutputIt>
|
||
|
FMT_CONSTEXPR auto write(OutputIt out, const Char* s, const format_specs& specs,
|
||
|
locale_ref) -> OutputIt {
|
||
|
if (specs.type() == presentation_type::pointer)
|
||
|
return write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs);
|
||
|
if (!s) report_error("string pointer is null");
|
||
|
return write<Char>(out, basic_string_view<Char>(s), specs, {});
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename T,
|
||
|
FMT_ENABLE_IF(is_integral<T>::value &&
|
||
|
!std::is_same<T, bool>::value &&
|
||
|
!std::is_same<T, Char>::value)>
|
||
|
FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
|
||
|
auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
|
||
|
bool negative = is_negative(value);
|
||
|
// Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
|
||
|
if (negative) abs_value = ~abs_value + 1;
|
||
|
int num_digits = count_digits(abs_value);
|
||
|
auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits);
|
||
|
if (auto ptr = to_pointer<Char>(out, size)) {
|
||
|
if (negative) *ptr++ = static_cast<Char>('-');
|
||
|
format_decimal<Char>(ptr, abs_value, num_digits);
|
||
|
return out;
|
||
|
}
|
||
|
if (negative) *out++ = static_cast<Char>('-');
|
||
|
return format_decimal<Char>(out, abs_value, num_digits);
|
||
|
}
|
||
|
|
||
|
template <typename Char>
|
||
|
FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end,
|
||
|
format_specs& specs) -> const Char* {
|
||
|
FMT_ASSERT(begin != end, "");
|
||
|
auto alignment = align::none;
|
||
|
auto p = begin + code_point_length(begin);
|
||
|
if (end - p <= 0) p = begin;
|
||
|
for (;;) {
|
||
|
switch (to_ascii(*p)) {
|
||
|
case '<': alignment = align::left; break;
|
||
|
case '>': alignment = align::right; break;
|
||
|
case '^': alignment = align::center; break;
|
||
|
}
|
||
|
if (alignment != align::none) {
|
||
|
if (p != begin) {
|
||
|
auto c = *begin;
|
||
|
if (c == '}') return begin;
|
||
|
if (c == '{') {
|
||
|
report_error("invalid fill character '{'");
|
||
|
return begin;
|
||
|
}
|
||
|
specs.set_fill(basic_string_view<Char>(begin, to_unsigned(p - begin)));
|
||
|
begin = p + 1;
|
||
|
} else {
|
||
|
++begin;
|
||
|
}
|
||
|
break;
|
||
|
} else if (p == begin) {
|
||
|
break;
|
||
|
}
|
||
|
p = begin;
|
||
|
}
|
||
|
specs.set_align(alignment);
|
||
|
return begin;
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt>
|
||
|
FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isnan,
|
||
|
format_specs specs, sign s) -> OutputIt {
|
||
|
auto str =
|
||
|
isnan ? (specs.upper() ? "NAN" : "nan") : (specs.upper() ? "INF" : "inf");
|
||
|
constexpr size_t str_size = 3;
|
||
|
auto size = str_size + (s != sign::none ? 1 : 0);
|
||
|
// Replace '0'-padding with space for non-finite values.
|
||
|
const bool is_zero_fill =
|
||
|
specs.fill_size() == 1 && specs.fill_unit<Char>() == '0';
|
||
|
if (is_zero_fill) specs.set_fill(' ');
|
||
|
return write_padded<Char>(out, specs, size,
|
||
|
[=](reserve_iterator<OutputIt> it) {
|
||
|
if (s != sign::none)
|
||
|
*it++ = detail::getsign<Char>(s);
|
||
|
return copy<Char>(str, str + str_size, it);
|
||
|
});
|
||
|
}
|
||
|
|
||
|
// A decimal floating-point number significand * pow(10, exp).
|
||
|
struct big_decimal_fp {
|
||
|
const char* significand;
|
||
|
int significand_size;
|
||
|
int exponent;
|
||
|
};
|
||
|
|
||
|
constexpr auto get_significand_size(const big_decimal_fp& f) -> int {
|
||
|
return f.significand_size;
|
||
|
}
|
||
|
template <typename T>
|
||
|
inline auto get_significand_size(const dragonbox::decimal_fp<T>& f) -> int {
|
||
|
return count_digits(f.significand);
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt>
|
||
|
constexpr auto write_significand(OutputIt out, const char* significand,
|
||
|
int significand_size) -> OutputIt {
|
||
|
return copy<Char>(significand, significand + significand_size, out);
|
||
|
}
|
||
|
template <typename Char, typename OutputIt, typename UInt>
|
||
|
inline auto write_significand(OutputIt out, UInt significand,
|
||
|
int significand_size) -> OutputIt {
|
||
|
return format_decimal<Char>(out, significand, significand_size);
|
||
|
}
|
||
|
template <typename Char, typename OutputIt, typename T, typename Grouping>
|
||
|
FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
|
||
|
int significand_size, int exponent,
|
||
|
const Grouping& grouping) -> OutputIt {
|
||
|
if (!grouping.has_separator()) {
|
||
|
out = write_significand<Char>(out, significand, significand_size);
|
||
|
return detail::fill_n(out, exponent, static_cast<Char>('0'));
|
||
|
}
|
||
|
auto buffer = memory_buffer();
|
||
|
write_significand<char>(appender(buffer), significand, significand_size);
|
||
|
detail::fill_n(appender(buffer), exponent, '0');
|
||
|
return grouping.apply(out, string_view(buffer.data(), buffer.size()));
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename UInt,
|
||
|
FMT_ENABLE_IF(std::is_integral<UInt>::value)>
|
||
|
inline auto write_significand(Char* out, UInt significand, int significand_size,
|
||
|
int integral_size, Char decimal_point) -> Char* {
|
||
|
if (!decimal_point) return format_decimal(out, significand, significand_size);
|
||
|
out += significand_size + 1;
|
||
|
Char* end = out;
|
||
|
int floating_size = significand_size - integral_size;
|
||
|
for (int i = floating_size / 2; i > 0; --i) {
|
||
|
out -= 2;
|
||
|
write2digits(out, static_cast<std::size_t>(significand % 100));
|
||
|
significand /= 100;
|
||
|
}
|
||
|
if (floating_size % 2 != 0) {
|
||
|
*--out = static_cast<Char>('0' + significand % 10);
|
||
|
significand /= 10;
|
||
|
}
|
||
|
*--out = decimal_point;
|
||
|
format_decimal(out - integral_size, significand, integral_size);
|
||
|
return end;
|
||
|
}
|
||
|
|
||
|
template <typename OutputIt, typename UInt, typename Char,
|
||
|
FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)>
|
||
|
inline auto write_significand(OutputIt out, UInt significand,
|
||
|
int significand_size, int integral_size,
|
||
|
Char decimal_point) -> OutputIt {
|
||
|
// Buffer is large enough to hold digits (digits10 + 1) and a decimal point.
|
||
|
Char buffer[digits10<UInt>() + 2];
|
||
|
auto end = write_significand(buffer, significand, significand_size,
|
||
|
integral_size, decimal_point);
|
||
|
return detail::copy_noinline<Char>(buffer, end, out);
|
||
|
}
|
||
|
|
||
|
template <typename OutputIt, typename Char>
|
||
|
FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand,
|
||
|
int significand_size, int integral_size,
|
||
|
Char decimal_point) -> OutputIt {
|
||
|
out = detail::copy_noinline<Char>(significand, significand + integral_size,
|
||
|
out);
|
||
|
if (!decimal_point) return out;
|
||
|
*out++ = decimal_point;
|
||
|
return detail::copy_noinline<Char>(significand + integral_size,
|
||
|
significand + significand_size, out);
|
||
|
}
|
||
|
|
||
|
template <typename OutputIt, typename Char, typename T, typename Grouping>
|
||
|
FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
|
||
|
int significand_size, int integral_size,
|
||
|
Char decimal_point,
|
||
|
const Grouping& grouping) -> OutputIt {
|
||
|
if (!grouping.has_separator()) {
|
||
|
return write_significand(out, significand, significand_size, integral_size,
|
||
|
decimal_point);
|
||
|
}
|
||
|
auto buffer = basic_memory_buffer<Char>();
|
||
|
write_significand(basic_appender<Char>(buffer), significand, significand_size,
|
||
|
integral_size, decimal_point);
|
||
|
grouping.apply(
|
||
|
out, basic_string_view<Char>(buffer.data(), to_unsigned(integral_size)));
|
||
|
return detail::copy_noinline<Char>(buffer.data() + integral_size,
|
||
|
buffer.end(), out);
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename DecimalFP,
|
||
|
typename Grouping = digit_grouping<Char>>
|
||
|
FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& f,
|
||
|
const format_specs& specs, sign s,
|
||
|
locale_ref loc) -> OutputIt {
|
||
|
auto significand = f.significand;
|
||
|
int significand_size = get_significand_size(f);
|
||
|
const Char zero = static_cast<Char>('0');
|
||
|
size_t size = to_unsigned(significand_size) + (s != sign::none ? 1 : 0);
|
||
|
using iterator = reserve_iterator<OutputIt>;
|
||
|
|
||
|
Char decimal_point = specs.localized() ? detail::decimal_point<Char>(loc)
|
||
|
: static_cast<Char>('.');
|
||
|
|
||
|
int output_exp = f.exponent + significand_size - 1;
|
||
|
auto use_exp_format = [=]() {
|
||
|
if (specs.type() == presentation_type::exp) return true;
|
||
|
if (specs.type() == presentation_type::fixed) return false;
|
||
|
// Use the fixed notation if the exponent is in [exp_lower, exp_upper),
|
||
|
// e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation.
|
||
|
const int exp_lower = -4, exp_upper = 16;
|
||
|
return output_exp < exp_lower ||
|
||
|
output_exp >= (specs.precision > 0 ? specs.precision : exp_upper);
|
||
|
};
|
||
|
if (use_exp_format()) {
|
||
|
int num_zeros = 0;
|
||
|
if (specs.alt()) {
|
||
|
num_zeros = specs.precision - significand_size;
|
||
|
if (num_zeros < 0) num_zeros = 0;
|
||
|
size += to_unsigned(num_zeros);
|
||
|
} else if (significand_size == 1) {
|
||
|
decimal_point = Char();
|
||
|
}
|
||
|
auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp;
|
||
|
int exp_digits = 2;
|
||
|
if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3;
|
||
|
|
||
|
size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits);
|
||
|
char exp_char = specs.upper() ? 'E' : 'e';
|
||
|
auto write = [=](iterator it) {
|
||
|
if (s != sign::none) *it++ = detail::getsign<Char>(s);
|
||
|
// Insert a decimal point after the first digit and add an exponent.
|
||
|
it = write_significand(it, significand, significand_size, 1,
|
||
|
decimal_point);
|
||
|
if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero);
|
||
|
*it++ = static_cast<Char>(exp_char);
|
||
|
return write_exponent<Char>(output_exp, it);
|
||
|
};
|
||
|
return specs.width > 0
|
||
|
? write_padded<Char, align::right>(out, specs, size, write)
|
||
|
: base_iterator(out, write(reserve(out, size)));
|
||
|
}
|
||
|
|
||
|
int exp = f.exponent + significand_size;
|
||
|
if (f.exponent >= 0) {
|
||
|
// 1234e5 -> 123400000[.0+]
|
||
|
size += to_unsigned(f.exponent);
|
||
|
int num_zeros = specs.precision - exp;
|
||
|
abort_fuzzing_if(num_zeros > 5000);
|
||
|
if (specs.alt()) {
|
||
|
++size;
|
||
|
if (num_zeros <= 0 && specs.type() != presentation_type::fixed)
|
||
|
num_zeros = 0;
|
||
|
if (num_zeros > 0) size += to_unsigned(num_zeros);
|
||
|
}
|
||
|
auto grouping = Grouping(loc, specs.localized());
|
||
|
size += to_unsigned(grouping.count_separators(exp));
|
||
|
return write_padded<Char, align::right>(out, specs, size, [&](iterator it) {
|
||
|
if (s != sign::none) *it++ = detail::getsign<Char>(s);
|
||
|
it = write_significand<Char>(it, significand, significand_size,
|
||
|
f.exponent, grouping);
|
||
|
if (!specs.alt()) return it;
|
||
|
*it++ = decimal_point;
|
||
|
return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
|
||
|
});
|
||
|
} else if (exp > 0) {
|
||
|
// 1234e-2 -> 12.34[0+]
|
||
|
int num_zeros = specs.alt() ? specs.precision - significand_size : 0;
|
||
|
size += 1 + static_cast<unsigned>(max_of(num_zeros, 0));
|
||
|
auto grouping = Grouping(loc, specs.localized());
|
||
|
size += to_unsigned(grouping.count_separators(exp));
|
||
|
return write_padded<Char, align::right>(out, specs, size, [&](iterator it) {
|
||
|
if (s != sign::none) *it++ = detail::getsign<Char>(s);
|
||
|
it = write_significand(it, significand, significand_size, exp,
|
||
|
decimal_point, grouping);
|
||
|
return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
|
||
|
});
|
||
|
}
|
||
|
// 1234e-6 -> 0.001234
|
||
|
int num_zeros = -exp;
|
||
|
if (significand_size == 0 && specs.precision >= 0 &&
|
||
|
specs.precision < num_zeros) {
|
||
|
num_zeros = specs.precision;
|
||
|
}
|
||
|
bool pointy = num_zeros != 0 || significand_size != 0 || specs.alt();
|
||
|
size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros);
|
||
|
return write_padded<Char, align::right>(out, specs, size, [&](iterator it) {
|
||
|
if (s != sign::none) *it++ = detail::getsign<Char>(s);
|
||
|
*it++ = zero;
|
||
|
if (!pointy) return it;
|
||
|
*it++ = decimal_point;
|
||
|
it = detail::fill_n(it, num_zeros, zero);
|
||
|
return write_significand<Char>(it, significand, significand_size);
|
||
|
});
|
||
|
}
|
||
|
|
||
|
template <typename Char> class fallback_digit_grouping {
|
||
|
public:
|
||
|
constexpr fallback_digit_grouping(locale_ref, bool) {}
|
||
|
|
||
|
constexpr auto has_separator() const -> bool { return false; }
|
||
|
|
||
|
constexpr auto count_separators(int) const -> int { return 0; }
|
||
|
|
||
|
template <typename Out, typename C>
|
||
|
constexpr auto apply(Out out, basic_string_view<C>) const -> Out {
|
||
|
return out;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename DecimalFP>
|
||
|
FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& f,
|
||
|
const format_specs& specs, sign s,
|
||
|
locale_ref loc) -> OutputIt {
|
||
|
if (is_constant_evaluated()) {
|
||
|
return do_write_float<Char, OutputIt, DecimalFP,
|
||
|
fallback_digit_grouping<Char>>(out, f, specs, s, loc);
|
||
|
} else {
|
||
|
return do_write_float<Char>(out, f, specs, s, loc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename T> constexpr auto isnan(T value) -> bool {
|
||
|
return value != value; // std::isnan doesn't support __float128.
|
||
|
}
|
||
|
|
||
|
template <typename T, typename Enable = void>
|
||
|
struct has_isfinite : std::false_type {};
|
||
|
|
||
|
template <typename T>
|
||
|
struct has_isfinite<T, enable_if_t<sizeof(std::isfinite(T())) != 0>>
|
||
|
: std::true_type {};
|
||
|
|
||
|
template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value&&
|
||
|
has_isfinite<T>::value)>
|
||
|
FMT_CONSTEXPR20 auto isfinite(T value) -> bool {
|
||
|
constexpr T inf = T(std::numeric_limits<double>::infinity());
|
||
|
if (is_constant_evaluated())
|
||
|
return !detail::isnan(value) && value < inf && value > -inf;
|
||
|
return std::isfinite(value);
|
||
|
}
|
||
|
template <typename T, FMT_ENABLE_IF(!has_isfinite<T>::value)>
|
||
|
FMT_CONSTEXPR auto isfinite(T value) -> bool {
|
||
|
T inf = T(std::numeric_limits<double>::infinity());
|
||
|
// std::isfinite doesn't support __float128.
|
||
|
return !detail::isnan(value) && value < inf && value > -inf;
|
||
|
}
|
||
|
|
||
|
template <typename T, FMT_ENABLE_IF(is_floating_point<T>::value)>
|
||
|
FMT_INLINE FMT_CONSTEXPR bool signbit(T value) {
|
||
|
if (is_constant_evaluated()) {
|
||
|
#ifdef __cpp_if_constexpr
|
||
|
if constexpr (std::numeric_limits<double>::is_iec559) {
|
||
|
auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value));
|
||
|
return (bits >> (num_bits<uint64_t>() - 1)) != 0;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
return std::signbit(static_cast<double>(value));
|
||
|
}
|
||
|
|
||
|
inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) {
|
||
|
// Adjust fixed precision by exponent because it is relative to decimal
|
||
|
// point.
|
||
|
if (exp10 > 0 && precision > max_value<int>() - exp10)
|
||
|
FMT_THROW(format_error("number is too big"));
|
||
|
precision += exp10;
|
||
|
}
|
||
|
|
||
|
class bigint {
|
||
|
private:
|
||
|
// A bigint is a number in the form bigit_[N - 1] ... bigit_[0] * 32^exp_.
|
||
|
using bigit = uint32_t; // A big digit.
|
||
|
using double_bigit = uint64_t;
|
||
|
enum { bigit_bits = num_bits<bigit>() };
|
||
|
enum { bigits_capacity = 32 };
|
||
|
basic_memory_buffer<bigit, bigits_capacity> bigits_;
|
||
|
int exp_;
|
||
|
|
||
|
friend struct formatter<bigint>;
|
||
|
|
||
|
FMT_CONSTEXPR auto get_bigit(int i) const -> bigit {
|
||
|
return i >= exp_ && i < num_bigits() ? bigits_[i - exp_] : 0;
|
||
|
}
|
||
|
|
||
|
FMT_CONSTEXPR void subtract_bigits(int index, bigit other, bigit& borrow) {
|
||
|
auto result = double_bigit(bigits_[index]) - other - borrow;
|
||
|
bigits_[index] = static_cast<bigit>(result);
|
||
|
borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
|
||
|
}
|
||
|
|
||
|
FMT_CONSTEXPR void remove_leading_zeros() {
|
||
|
int num_bigits = static_cast<int>(bigits_.size()) - 1;
|
||
|
while (num_bigits > 0 && bigits_[num_bigits] == 0) --num_bigits;
|
||
|
bigits_.resize(to_unsigned(num_bigits + 1));
|
||
|
}
|
||
|
|
||
|
// Computes *this -= other assuming aligned bigints and *this >= other.
|
||
|
FMT_CONSTEXPR void subtract_aligned(const bigint& other) {
|
||
|
FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
|
||
|
FMT_ASSERT(compare(*this, other) >= 0, "");
|
||
|
bigit borrow = 0;
|
||
|
int i = other.exp_ - exp_;
|
||
|
for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
|
||
|
subtract_bigits(i, other.bigits_[j], borrow);
|
||
|
if (borrow != 0) subtract_bigits(i, 0, borrow);
|
||
|
FMT_ASSERT(borrow == 0, "");
|
||
|
remove_leading_zeros();
|
||
|
}
|
||
|
|
||
|
FMT_CONSTEXPR void multiply(uint32_t value) {
|
||
|
bigit carry = 0;
|
||
|
const double_bigit wide_value = value;
|
||
|
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
|
||
|
double_bigit result = bigits_[i] * wide_value + carry;
|
||
|
bigits_[i] = static_cast<bigit>(result);
|
||
|
carry = static_cast<bigit>(result >> bigit_bits);
|
||
|
}
|
||
|
if (carry != 0) bigits_.push_back(carry);
|
||
|
}
|
||
|
|
||
|
template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
|
||
|
std::is_same<UInt, uint128_t>::value)>
|
||
|
FMT_CONSTEXPR void multiply(UInt value) {
|
||
|
using half_uint =
|
||
|
conditional_t<std::is_same<UInt, uint128_t>::value, uint64_t, uint32_t>;
|
||
|
const int shift = num_bits<half_uint>() - bigit_bits;
|
||
|
const UInt lower = static_cast<half_uint>(value);
|
||
|
const UInt upper = value >> num_bits<half_uint>();
|
||
|
UInt carry = 0;
|
||
|
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
|
||
|
UInt result = lower * bigits_[i] + static_cast<bigit>(carry);
|
||
|
carry = (upper * bigits_[i] << shift) + (result >> bigit_bits) +
|
||
|
(carry >> bigit_bits);
|
||
|
bigits_[i] = static_cast<bigit>(result);
|
||
|
}
|
||
|
while (carry != 0) {
|
||
|
bigits_.push_back(static_cast<bigit>(carry));
|
||
|
carry >>= bigit_bits;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
|
||
|
std::is_same<UInt, uint128_t>::value)>
|
||
|
FMT_CONSTEXPR void assign(UInt n) {
|
||
|
size_t num_bigits = 0;
|
||
|
do {
|
||
|
bigits_[num_bigits++] = static_cast<bigit>(n);
|
||
|
n >>= bigit_bits;
|
||
|
} while (n != 0);
|
||
|
bigits_.resize(num_bigits);
|
||
|
exp_ = 0;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
FMT_CONSTEXPR bigint() : exp_(0) {}
|
||
|
explicit bigint(uint64_t n) { assign(n); }
|
||
|
|
||
|
bigint(const bigint&) = delete;
|
||
|
void operator=(const bigint&) = delete;
|
||
|
|
||
|
FMT_CONSTEXPR void assign(const bigint& other) {
|
||
|
auto size = other.bigits_.size();
|
||
|
bigits_.resize(size);
|
||
|
auto data = other.bigits_.data();
|
||
|
copy<bigit>(data, data + size, bigits_.data());
|
||
|
exp_ = other.exp_;
|
||
|
}
|
||
|
|
||
|
template <typename Int> FMT_CONSTEXPR void operator=(Int n) {
|
||
|
FMT_ASSERT(n > 0, "");
|
||
|
assign(uint64_or_128_t<Int>(n));
|
||
|
}
|
||
|
|
||
|
FMT_CONSTEXPR auto num_bigits() const -> int {
|
||
|
return static_cast<int>(bigits_.size()) + exp_;
|
||
|
}
|
||
|
|
||
|
FMT_CONSTEXPR auto operator<<=(int shift) -> bigint& {
|
||
|
FMT_ASSERT(shift >= 0, "");
|
||
|
exp_ += shift / bigit_bits;
|
||
|
shift %= bigit_bits;
|
||
|
if (shift == 0) return *this;
|
||
|
bigit carry = 0;
|
||
|
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
|
||
|
bigit c = bigits_[i] >> (bigit_bits - shift);
|
||
|
bigits_[i] = (bigits_[i] << shift) + carry;
|
||
|
carry = c;
|
||
|
}
|
||
|
if (carry != 0) bigits_.push_back(carry);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <typename Int> FMT_CONSTEXPR auto operator*=(Int value) -> bigint& {
|
||
|
FMT_ASSERT(value > 0, "");
|
||
|
multiply(uint32_or_64_or_128_t<Int>(value));
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
friend FMT_CONSTEXPR auto compare(const bigint& b1, const bigint& b2) -> int {
|
||
|
int num_bigits1 = b1.num_bigits(), num_bigits2 = b2.num_bigits();
|
||
|
if (num_bigits1 != num_bigits2) return num_bigits1 > num_bigits2 ? 1 : -1;
|
||
|
int i = static_cast<int>(b1.bigits_.size()) - 1;
|
||
|
int j = static_cast<int>(b2.bigits_.size()) - 1;
|
||
|
int end = i - j;
|
||
|
if (end < 0) end = 0;
|
||
|
for (; i >= end; --i, --j) {
|
||
|
bigit b1_bigit = b1.bigits_[i], b2_bigit = b2.bigits_[j];
|
||
|
if (b1_bigit != b2_bigit) return b1_bigit > b2_bigit ? 1 : -1;
|
||
|
}
|
||
|
if (i != j) return i > j ? 1 : -1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Returns compare(lhs1 + lhs2, rhs).
|
||
|
friend FMT_CONSTEXPR auto add_compare(const bigint& lhs1, const bigint& lhs2,
|
||
|
const bigint& rhs) -> int {
|
||
|
int max_lhs_bigits = max_of(lhs1.num_bigits(), lhs2.num_bigits());
|
||
|
int num_rhs_bigits = rhs.num_bigits();
|
||
|
if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
|
||
|
if (max_lhs_bigits > num_rhs_bigits) return 1;
|
||
|
double_bigit borrow = 0;
|
||
|
int min_exp = min_of(min_of(lhs1.exp_, lhs2.exp_), rhs.exp_);
|
||
|
for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
|
||
|
double_bigit sum = double_bigit(lhs1.get_bigit(i)) + lhs2.get_bigit(i);
|
||
|
bigit rhs_bigit = rhs.get_bigit(i);
|
||
|
if (sum > rhs_bigit + borrow) return 1;
|
||
|
borrow = rhs_bigit + borrow - sum;
|
||
|
if (borrow > 1) return -1;
|
||
|
borrow <<= bigit_bits;
|
||
|
}
|
||
|
return borrow != 0 ? -1 : 0;
|
||
|
}
|
||
|
|
||
|
// Assigns pow(10, exp) to this bigint.
|
||
|
FMT_CONSTEXPR20 void assign_pow10(int exp) {
|
||
|
FMT_ASSERT(exp >= 0, "");
|
||
|
if (exp == 0) return *this = 1;
|
||
|
int bitmask = 1 << (num_bits<unsigned>() -
|
||
|
countl_zero(static_cast<uint32_t>(exp)) - 1);
|
||
|
// pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
|
||
|
// repeated squaring and multiplication.
|
||
|
*this = 5;
|
||
|
bitmask >>= 1;
|
||
|
while (bitmask != 0) {
|
||
|
square();
|
||
|
if ((exp & bitmask) != 0) *this *= 5;
|
||
|
bitmask >>= 1;
|
||
|
}
|
||
|
*this <<= exp; // Multiply by pow(2, exp) by shifting.
|
||
|
}
|
||
|
|
||
|
FMT_CONSTEXPR20 void square() {
|
||
|
int num_bigits = static_cast<int>(bigits_.size());
|
||
|
int num_result_bigits = 2 * num_bigits;
|
||
|
basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
|
||
|
bigits_.resize(to_unsigned(num_result_bigits));
|
||
|
auto sum = uint128_t();
|
||
|
for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
|
||
|
// Compute bigit at position bigit_index of the result by adding
|
||
|
// cross-product terms n[i] * n[j] such that i + j == bigit_index.
|
||
|
for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
|
||
|
// Most terms are multiplied twice which can be optimized in the future.
|
||
|
sum += double_bigit(n[i]) * n[j];
|
||
|
}
|
||
|
bigits_[bigit_index] = static_cast<bigit>(sum);
|
||
|
sum >>= num_bits<bigit>(); // Compute the carry.
|
||
|
}
|
||
|
// Do the same for the top half.
|
||
|
for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
|
||
|
++bigit_index) {
|
||
|
for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
|
||
|
sum += double_bigit(n[i++]) * n[j--];
|
||
|
bigits_[bigit_index] = static_cast<bigit>(sum);
|
||
|
sum >>= num_bits<bigit>();
|
||
|
}
|
||
|
remove_leading_zeros();
|
||
|
exp_ *= 2;
|
||
|
}
|
||
|
|
||
|
// If this bigint has a bigger exponent than other, adds trailing zero to make
|
||
|
// exponents equal. This simplifies some operations such as subtraction.
|
||
|
FMT_CONSTEXPR void align(const bigint& other) {
|
||
|
int exp_difference = exp_ - other.exp_;
|
||
|
if (exp_difference <= 0) return;
|
||
|
int num_bigits = static_cast<int>(bigits_.size());
|
||
|
bigits_.resize(to_unsigned(num_bigits + exp_difference));
|
||
|
for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
|
||
|
bigits_[j] = bigits_[i];
|
||
|
memset(bigits_.data(), 0, to_unsigned(exp_difference) * sizeof(bigit));
|
||
|
exp_ -= exp_difference;
|
||
|
}
|
||
|
|
||
|
// Divides this bignum by divisor, assigning the remainder to this and
|
||
|
// returning the quotient.
|
||
|
FMT_CONSTEXPR auto divmod_assign(const bigint& divisor) -> int {
|
||
|
FMT_ASSERT(this != &divisor, "");
|
||
|
if (compare(*this, divisor) < 0) return 0;
|
||
|
FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
|
||
|
align(divisor);
|
||
|
int quotient = 0;
|
||
|
do {
|
||
|
subtract_aligned(divisor);
|
||
|
++quotient;
|
||
|
} while (compare(*this, divisor) >= 0);
|
||
|
return quotient;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// format_dragon flags.
|
||
|
enum dragon {
|
||
|
predecessor_closer = 1,
|
||
|
fixup = 2, // Run fixup to correct exp10 which can be off by one.
|
||
|
fixed = 4,
|
||
|
};
|
||
|
|
||
|
// Formats a floating-point number using a variation of the Fixed-Precision
|
||
|
// Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
|
||
|
// https://fmt.dev/papers/p372-steele.pdf.
|
||
|
FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value,
|
||
|
unsigned flags, int num_digits,
|
||
|
buffer<char>& buf, int& exp10) {
|
||
|
bigint numerator; // 2 * R in (FPP)^2.
|
||
|
bigint denominator; // 2 * S in (FPP)^2.
|
||
|
// lower and upper are differences between value and corresponding boundaries.
|
||
|
bigint lower; // (M^- in (FPP)^2).
|
||
|
bigint upper_store; // upper's value if different from lower.
|
||
|
bigint* upper = nullptr; // (M^+ in (FPP)^2).
|
||
|
// Shift numerator and denominator by an extra bit or two (if lower boundary
|
||
|
// is closer) to make lower and upper integers. This eliminates multiplication
|
||
|
// by 2 during later computations.
|
||
|
bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0;
|
||
|
int shift = is_predecessor_closer ? 2 : 1;
|
||
|
if (value.e >= 0) {
|
||
|
numerator = value.f;
|
||
|
numerator <<= value.e + shift;
|
||
|
lower = 1;
|
||
|
lower <<= value.e;
|
||
|
if (is_predecessor_closer) {
|
||
|
upper_store = 1;
|
||
|
upper_store <<= value.e + 1;
|
||
|
upper = &upper_store;
|
||
|
}
|
||
|
denominator.assign_pow10(exp10);
|
||
|
denominator <<= shift;
|
||
|
} else if (exp10 < 0) {
|
||
|
numerator.assign_pow10(-exp10);
|
||
|
lower.assign(numerator);
|
||
|
if (is_predecessor_closer) {
|
||
|
upper_store.assign(numerator);
|
||
|
upper_store <<= 1;
|
||
|
upper = &upper_store;
|
||
|
}
|
||
|
numerator *= value.f;
|
||
|
numerator <<= shift;
|
||
|
denominator = 1;
|
||
|
denominator <<= shift - value.e;
|
||
|
} else {
|
||
|
numerator = value.f;
|
||
|
numerator <<= shift;
|
||
|
denominator.assign_pow10(exp10);
|
||
|
denominator <<= shift - value.e;
|
||
|
lower = 1;
|
||
|
if (is_predecessor_closer) {
|
||
|
upper_store = 1ULL << 1;
|
||
|
upper = &upper_store;
|
||
|
}
|
||
|
}
|
||
|
int even = static_cast<int>((value.f & 1) == 0);
|
||
|
if (!upper) upper = &lower;
|
||
|
bool shortest = num_digits < 0;
|
||
|
if ((flags & dragon::fixup) != 0) {
|
||
|
if (add_compare(numerator, *upper, denominator) + even <= 0) {
|
||
|
--exp10;
|
||
|
numerator *= 10;
|
||
|
if (num_digits < 0) {
|
||
|
lower *= 10;
|
||
|
if (upper != &lower) *upper *= 10;
|
||
|
}
|
||
|
}
|
||
|
if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1);
|
||
|
}
|
||
|
// Invariant: value == (numerator / denominator) * pow(10, exp10).
|
||
|
if (shortest) {
|
||
|
// Generate the shortest representation.
|
||
|
num_digits = 0;
|
||
|
char* data = buf.data();
|
||
|
for (;;) {
|
||
|
int digit = numerator.divmod_assign(denominator);
|
||
|
bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower.
|
||
|
// numerator + upper >[=] pow10:
|
||
|
bool high = add_compare(numerator, *upper, denominator) + even > 0;
|
||
|
data[num_digits++] = static_cast<char>('0' + digit);
|
||
|
if (low || high) {
|
||
|
if (!low) {
|
||
|
++data[num_digits - 1];
|
||
|
} else if (high) {
|
||
|
int result = add_compare(numerator, numerator, denominator);
|
||
|
// Round half to even.
|
||
|
if (result > 0 || (result == 0 && (digit % 2) != 0))
|
||
|
++data[num_digits - 1];
|
||
|
}
|
||
|
buf.try_resize(to_unsigned(num_digits));
|
||
|
exp10 -= num_digits - 1;
|
||
|
return;
|
||
|
}
|
||
|
numerator *= 10;
|
||
|
lower *= 10;
|
||
|
if (upper != &lower) *upper *= 10;
|
||
|
}
|
||
|
}
|
||
|
// Generate the given number of digits.
|
||
|
exp10 -= num_digits - 1;
|
||
|
if (num_digits <= 0) {
|
||
|
auto digit = '0';
|
||
|
if (num_digits == 0) {
|
||
|
denominator *= 10;
|
||
|
digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
|
||
|
}
|
||
|
buf.push_back(digit);
|
||
|
return;
|
||
|
}
|
||
|
buf.try_resize(to_unsigned(num_digits));
|
||
|
for (int i = 0; i < num_digits - 1; ++i) {
|
||
|
int digit = numerator.divmod_assign(denominator);
|
||
|
buf[i] = static_cast<char>('0' + digit);
|
||
|
numerator *= 10;
|
||
|
}
|
||
|
int digit = numerator.divmod_assign(denominator);
|
||
|
auto result = add_compare(numerator, numerator, denominator);
|
||
|
if (result > 0 || (result == 0 && (digit % 2) != 0)) {
|
||
|
if (digit == 9) {
|
||
|
const auto overflow = '0' + 10;
|
||
|
buf[num_digits - 1] = overflow;
|
||
|
// Propagate the carry.
|
||
|
for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
|
||
|
buf[i] = '0';
|
||
|
++buf[i - 1];
|
||
|
}
|
||
|
if (buf[0] == overflow) {
|
||
|
buf[0] = '1';
|
||
|
if ((flags & dragon::fixed) != 0)
|
||
|
buf.push_back('0');
|
||
|
else
|
||
|
++exp10;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
++digit;
|
||
|
}
|
||
|
buf[num_digits - 1] = static_cast<char>('0' + digit);
|
||
|
}
|
||
|
|
||
|
// Formats a floating-point number using the hexfloat format.
|
||
|
template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
|
||
|
FMT_CONSTEXPR20 void format_hexfloat(Float value, format_specs specs,
|
||
|
buffer<char>& buf) {
|
||
|
// float is passed as double to reduce the number of instantiations and to
|
||
|
// simplify implementation.
|
||
|
static_assert(!std::is_same<Float, float>::value, "");
|
||
|
|
||
|
using info = dragonbox::float_info<Float>;
|
||
|
|
||
|
// Assume Float is in the format [sign][exponent][significand].
|
||
|
using carrier_uint = typename info::carrier_uint;
|
||
|
|
||
|
const auto num_float_significand_bits = detail::num_significand_bits<Float>();
|
||
|
|
||
|
basic_fp<carrier_uint> f(value);
|
||
|
f.e += num_float_significand_bits;
|
||
|
if (!has_implicit_bit<Float>()) --f.e;
|
||
|
|
||
|
const auto num_fraction_bits =
|
||
|
num_float_significand_bits + (has_implicit_bit<Float>() ? 1 : 0);
|
||
|
const auto num_xdigits = (num_fraction_bits + 3) / 4;
|
||
|
|
||
|
const auto leading_shift = ((num_xdigits - 1) * 4);
|
||
|
const auto leading_mask = carrier_uint(0xF) << leading_shift;
|
||
|
const auto leading_xdigit =
|
||
|
static_cast<uint32_t>((f.f & leading_mask) >> leading_shift);
|
||
|
if (leading_xdigit > 1) f.e -= (32 - countl_zero(leading_xdigit) - 1);
|
||
|
|
||
|
int print_xdigits = num_xdigits - 1;
|
||
|
if (specs.precision >= 0 && print_xdigits > specs.precision) {
|
||
|
const int shift = ((print_xdigits - specs.precision - 1) * 4);
|
||
|
const auto mask = carrier_uint(0xF) << shift;
|
||
|
const auto v = static_cast<uint32_t>((f.f & mask) >> shift);
|
||
|
|
||
|
if (v >= 8) {
|
||
|
const auto inc = carrier_uint(1) << (shift + 4);
|
||
|
f.f += inc;
|
||
|
f.f &= ~(inc - 1);
|
||
|
}
|
||
|
|
||
|
// Check long double overflow
|
||
|
if (!has_implicit_bit<Float>()) {
|
||
|
const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
|
||
|
if ((f.f & implicit_bit) == implicit_bit) {
|
||
|
f.f >>= 4;
|
||
|
f.e += 4;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
print_xdigits = specs.precision;
|
||
|
}
|
||
|
|
||
|
char xdigits[num_bits<carrier_uint>() / 4];
|
||
|
detail::fill_n(xdigits, sizeof(xdigits), '0');
|
||
|
format_base2e(4, xdigits, f.f, num_xdigits, specs.upper());
|
||
|
|
||
|
// Remove zero tail
|
||
|
while (print_xdigits > 0 && xdigits[print_xdigits] == '0') --print_xdigits;
|
||
|
|
||
|
buf.push_back('0');
|
||
|
buf.push_back(specs.upper() ? 'X' : 'x');
|
||
|
buf.push_back(xdigits[0]);
|
||
|
if (specs.alt() || print_xdigits > 0 || print_xdigits < specs.precision)
|
||
|
buf.push_back('.');
|
||
|
buf.append(xdigits + 1, xdigits + 1 + print_xdigits);
|
||
|
for (; print_xdigits < specs.precision; ++print_xdigits) buf.push_back('0');
|
||
|
|
||
|
buf.push_back(specs.upper() ? 'P' : 'p');
|
||
|
|
||
|
uint32_t abs_e;
|
||
|
if (f.e < 0) {
|
||
|
buf.push_back('-');
|
||
|
abs_e = static_cast<uint32_t>(-f.e);
|
||
|
} else {
|
||
|
buf.push_back('+');
|
||
|
abs_e = static_cast<uint32_t>(f.e);
|
||
|
}
|
||
|
format_decimal<char>(appender(buf), abs_e, detail::count_digits(abs_e));
|
||
|
}
|
||
|
|
||
|
template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
|
||
|
FMT_CONSTEXPR20 void format_hexfloat(Float value, format_specs specs,
|
||
|
buffer<char>& buf) {
|
||
|
format_hexfloat(static_cast<double>(value), specs, buf);
|
||
|
}
|
||
|
|
||
|
constexpr auto fractional_part_rounding_thresholds(int index) -> uint32_t {
|
||
|
// For checking rounding thresholds.
|
||
|
// The kth entry is chosen to be the smallest integer such that the
|
||
|
// upper 32-bits of 10^(k+1) times it is strictly bigger than 5 * 10^k.
|
||
|
// It is equal to ceil(2^31 + 2^32/10^(k + 1)).
|
||
|
// These are stored in a string literal because we cannot have static arrays
|
||
|
// in constexpr functions and non-static ones are poorly optimized.
|
||
|
return U"\x9999999a\x828f5c29\x80418938\x80068db9\x8000a7c6\x800010c7"
|
||
|
U"\x800001ae\x8000002b"[index];
|
||
|
}
|
||
|
|
||
|
template <typename Float>
|
||
|
FMT_CONSTEXPR20 auto format_float(Float value, int precision,
|
||
|
const format_specs& specs, bool binary32,
|
||
|
buffer<char>& buf) -> int {
|
||
|
// float is passed as double to reduce the number of instantiations.
|
||
|
static_assert(!std::is_same<Float, float>::value, "");
|
||
|
auto converted_value = convert_float(value);
|
||
|
|
||
|
const bool fixed = specs.type() == presentation_type::fixed;
|
||
|
if (value == 0) {
|
||
|
if (precision <= 0 || !fixed) {
|
||
|
buf.push_back('0');
|
||
|
return 0;
|
||
|
}
|
||
|
buf.try_resize(to_unsigned(precision));
|
||
|
fill_n(buf.data(), precision, '0');
|
||
|
return -precision;
|
||
|
}
|
||
|
|
||
|
int exp = 0;
|
||
|
bool use_dragon = true;
|
||
|
unsigned dragon_flags = 0;
|
||
|
if (!is_fast_float<Float>() || is_constant_evaluated()) {
|
||
|
const auto inv_log2_10 = 0.3010299956639812; // 1 / log2(10)
|
||
|
using info = dragonbox::float_info<decltype(converted_value)>;
|
||
|
const auto f = basic_fp<typename info::carrier_uint>(converted_value);
|
||
|
// Compute exp, an approximate power of 10, such that
|
||
|
// 10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1).
|
||
|
// This is based on log10(value) == log2(value) / log2(10) and approximation
|
||
|
// of log2(value) by e + num_fraction_bits idea from double-conversion.
|
||
|
auto e = (f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10;
|
||
|
exp = static_cast<int>(e);
|
||
|
if (e > exp) ++exp; // Compute ceil.
|
||
|
dragon_flags = dragon::fixup;
|
||
|
} else {
|
||
|
// Extract significand bits and exponent bits.
|
||
|
using info = dragonbox::float_info<double>;
|
||
|
auto br = bit_cast<uint64_t>(static_cast<double>(value));
|
||
|
|
||
|
const uint64_t significand_mask =
|
||
|
(static_cast<uint64_t>(1) << num_significand_bits<double>()) - 1;
|
||
|
uint64_t significand = (br & significand_mask);
|
||
|
int exponent = static_cast<int>((br & exponent_mask<double>()) >>
|
||
|
num_significand_bits<double>());
|
||
|
|
||
|
if (exponent != 0) { // Check if normal.
|
||
|
exponent -= exponent_bias<double>() + num_significand_bits<double>();
|
||
|
significand |=
|
||
|
(static_cast<uint64_t>(1) << num_significand_bits<double>());
|
||
|
significand <<= 1;
|
||
|
} else {
|
||
|
// Normalize subnormal inputs.
|
||
|
FMT_ASSERT(significand != 0, "zeros should not appear here");
|
||
|
int shift = countl_zero(significand);
|
||
|
FMT_ASSERT(shift >= num_bits<uint64_t>() - num_significand_bits<double>(),
|
||
|
"");
|
||
|
shift -= (num_bits<uint64_t>() - num_significand_bits<double>() - 2);
|
||
|
exponent = (std::numeric_limits<double>::min_exponent -
|
||
|
num_significand_bits<double>()) -
|
||
|
shift;
|
||
|
significand <<= shift;
|
||
|
}
|
||
|
|
||
|
// Compute the first several nonzero decimal significand digits.
|
||
|
// We call the number we get the first segment.
|
||
|
const int k = info::kappa - dragonbox::floor_log10_pow2(exponent);
|
||
|
exp = -k;
|
||
|
const int beta = exponent + dragonbox::floor_log2_pow10(k);
|
||
|
uint64_t first_segment;
|
||
|
bool has_more_segments;
|
||
|
int digits_in_the_first_segment;
|
||
|
{
|
||
|
const auto r = dragonbox::umul192_upper128(
|
||
|
significand << beta, dragonbox::get_cached_power(k));
|
||
|
first_segment = r.high();
|
||
|
has_more_segments = r.low() != 0;
|
||
|
|
||
|
// The first segment can have 18 ~ 19 digits.
|
||
|
if (first_segment >= 1000000000000000000ULL) {
|
||
|
digits_in_the_first_segment = 19;
|
||
|
} else {
|
||
|
// When it is of 18-digits, we align it to 19-digits by adding a bogus
|
||
|
// zero at the end.
|
||
|
digits_in_the_first_segment = 18;
|
||
|
first_segment *= 10;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Compute the actual number of decimal digits to print.
|
||
|
if (fixed) adjust_precision(precision, exp + digits_in_the_first_segment);
|
||
|
|
||
|
// Use Dragon4 only when there might be not enough digits in the first
|
||
|
// segment.
|
||
|
if (digits_in_the_first_segment > precision) {
|
||
|
use_dragon = false;
|
||
|
|
||
|
if (precision <= 0) {
|
||
|
exp += digits_in_the_first_segment;
|
||
|
|
||
|
if (precision < 0) {
|
||
|
// Nothing to do, since all we have are just leading zeros.
|
||
|
buf.try_resize(0);
|
||
|
} else {
|
||
|
// We may need to round-up.
|
||
|
buf.try_resize(1);
|
||
|
if ((first_segment | static_cast<uint64_t>(has_more_segments)) >
|
||
|
5000000000000000000ULL) {
|
||
|
buf[0] = '1';
|
||
|
} else {
|
||
|
buf[0] = '0';
|
||
|
}
|
||
|
}
|
||
|
} // precision <= 0
|
||
|
else {
|
||
|
exp += digits_in_the_first_segment - precision;
|
||
|
|
||
|
// When precision > 0, we divide the first segment into three
|
||
|
// subsegments, each with 9, 9, and 0 ~ 1 digits so that each fits
|
||
|
// in 32-bits which usually allows faster calculation than in
|
||
|
// 64-bits. Since some compiler (e.g. MSVC) doesn't know how to optimize
|
||
|
// division-by-constant for large 64-bit divisors, we do it here
|
||
|
// manually. The magic number 7922816251426433760 below is equal to
|
||
|
// ceil(2^(64+32) / 10^10).
|
||
|
const uint32_t first_subsegment = static_cast<uint32_t>(
|
||
|
dragonbox::umul128_upper64(first_segment, 7922816251426433760ULL) >>
|
||
|
32);
|
||
|
const uint64_t second_third_subsegments =
|
||
|
first_segment - first_subsegment * 10000000000ULL;
|
||
|
|
||
|
uint64_t prod;
|
||
|
uint32_t digits;
|
||
|
bool should_round_up;
|
||
|
int number_of_digits_to_print = min_of(precision, 9);
|
||
|
|
||
|
// Print a 9-digits subsegment, either the first or the second.
|
||
|
auto print_subsegment = [&](uint32_t subsegment, char* buffer) {
|
||
|
int number_of_digits_printed = 0;
|
||
|
|
||
|
// If we want to print an odd number of digits from the subsegment,
|
||
|
if ((number_of_digits_to_print & 1) != 0) {
|
||
|
// Convert to 64-bit fixed-point fractional form with 1-digit
|
||
|
// integer part. The magic number 720575941 is a good enough
|
||
|
// approximation of 2^(32 + 24) / 10^8; see
|
||
|
// https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
|
||
|
// for details.
|
||
|
prod = ((subsegment * static_cast<uint64_t>(720575941)) >> 24) + 1;
|
||
|
digits = static_cast<uint32_t>(prod >> 32);
|
||
|
*buffer = static_cast<char>('0' + digits);
|
||
|
number_of_digits_printed++;
|
||
|
}
|
||
|
// If we want to print an even number of digits from the
|
||
|
// first_subsegment,
|
||
|
else {
|
||
|
// Convert to 64-bit fixed-point fractional form with 2-digits
|
||
|
// integer part. The magic number 450359963 is a good enough
|
||
|
// approximation of 2^(32 + 20) / 10^7; see
|
||
|
// https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
|
||
|
// for details.
|
||
|
prod = ((subsegment * static_cast<uint64_t>(450359963)) >> 20) + 1;
|
||
|
digits = static_cast<uint32_t>(prod >> 32);
|
||
|
write2digits(buffer, digits);
|
||
|
number_of_digits_printed += 2;
|
||
|
}
|
||
|
|
||
|
// Print all digit pairs.
|
||
|
while (number_of_digits_printed < number_of_digits_to_print) {
|
||
|
prod = static_cast<uint32_t>(prod) * static_cast<uint64_t>(100);
|
||
|
digits = static_cast<uint32_t>(prod >> 32);
|
||
|
write2digits(buffer + number_of_digits_printed, digits);
|
||
|
number_of_digits_printed += 2;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Print first subsegment.
|
||
|
print_subsegment(first_subsegment, buf.data());
|
||
|
|
||
|
// Perform rounding if the first subsegment is the last subsegment to
|
||
|
// print.
|
||
|
if (precision <= 9) {
|
||
|
// Rounding inside the subsegment.
|
||
|
// We round-up if:
|
||
|
// - either the fractional part is strictly larger than 1/2, or
|
||
|
// - the fractional part is exactly 1/2 and the last digit is odd.
|
||
|
// We rely on the following observations:
|
||
|
// - If fractional_part >= threshold, then the fractional part is
|
||
|
// strictly larger than 1/2.
|
||
|
// - If the MSB of fractional_part is set, then the fractional part
|
||
|
// must be at least 1/2.
|
||
|
// - When the MSB of fractional_part is set, either
|
||
|
// second_third_subsegments being nonzero or has_more_segments
|
||
|
// being true means there are further digits not printed, so the
|
||
|
// fractional part is strictly larger than 1/2.
|
||
|
if (precision < 9) {
|
||
|
uint32_t fractional_part = static_cast<uint32_t>(prod);
|
||
|
should_round_up =
|
||
|
fractional_part >= fractional_part_rounding_thresholds(
|
||
|
8 - number_of_digits_to_print) ||
|
||
|
((fractional_part >> 31) &
|
||
|
((digits & 1) | (second_third_subsegments != 0) |
|
||
|
has_more_segments)) != 0;
|
||
|
}
|
||
|
// Rounding at the subsegment boundary.
|
||
|
// In this case, the fractional part is at least 1/2 if and only if
|
||
|
// second_third_subsegments >= 5000000000ULL, and is strictly larger
|
||
|
// than 1/2 if we further have either second_third_subsegments >
|
||
|
// 5000000000ULL or has_more_segments == true.
|
||
|
else {
|
||
|
should_round_up = second_third_subsegments > 5000000000ULL ||
|
||
|
(second_third_subsegments == 5000000000ULL &&
|
||
|
((digits & 1) != 0 || has_more_segments));
|
||
|
}
|
||
|
}
|
||
|
// Otherwise, print the second subsegment.
|
||
|
else {
|
||
|
// Compilers are not aware of how to leverage the maximum value of
|
||
|
// second_third_subsegments to find out a better magic number which
|
||
|
// allows us to eliminate an additional shift. 1844674407370955162 =
|
||
|
// ceil(2^64/10) < ceil(2^64*(10^9/(10^10 - 1))).
|
||
|
const uint32_t second_subsegment =
|
||
|
static_cast<uint32_t>(dragonbox::umul128_upper64(
|
||
|
second_third_subsegments, 1844674407370955162ULL));
|
||
|
const uint32_t third_subsegment =
|
||
|
static_cast<uint32_t>(second_third_subsegments) -
|
||
|
second_subsegment * 10;
|
||
|
|
||
|
number_of_digits_to_print = precision - 9;
|
||
|
print_subsegment(second_subsegment, buf.data() + 9);
|
||
|
|
||
|
// Rounding inside the subsegment.
|
||
|
if (precision < 18) {
|
||
|
// The condition third_subsegment != 0 implies that the segment was
|
||
|
// of 19 digits, so in this case the third segment should be
|
||
|
// consisting of a genuine digit from the input.
|
||
|
uint32_t fractional_part = static_cast<uint32_t>(prod);
|
||
|
should_round_up =
|
||
|
fractional_part >= fractional_part_rounding_thresholds(
|
||
|
8 - number_of_digits_to_print) ||
|
||
|
((fractional_part >> 31) &
|
||
|
((digits & 1) | (third_subsegment != 0) |
|
||
|
has_more_segments)) != 0;
|
||
|
}
|
||
|
// Rounding at the subsegment boundary.
|
||
|
else {
|
||
|
// In this case, the segment must be of 19 digits, thus
|
||
|
// the third subsegment should be consisting of a genuine digit from
|
||
|
// the input.
|
||
|
should_round_up = third_subsegment > 5 ||
|
||
|
(third_subsegment == 5 &&
|
||
|
((digits & 1) != 0 || has_more_segments));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Round-up if necessary.
|
||
|
if (should_round_up) {
|
||
|
++buf[precision - 1];
|
||
|
for (int i = precision - 1; i > 0 && buf[i] > '9'; --i) {
|
||
|
buf[i] = '0';
|
||
|
++buf[i - 1];
|
||
|
}
|
||
|
if (buf[0] > '9') {
|
||
|
buf[0] = '1';
|
||
|
if (fixed)
|
||
|
buf[precision++] = '0';
|
||
|
else
|
||
|
++exp;
|
||
|
}
|
||
|
}
|
||
|
buf.try_resize(to_unsigned(precision));
|
||
|
}
|
||
|
} // if (digits_in_the_first_segment > precision)
|
||
|
else {
|
||
|
// Adjust the exponent for its use in Dragon4.
|
||
|
exp += digits_in_the_first_segment - 1;
|
||
|
}
|
||
|
}
|
||
|
if (use_dragon) {
|
||
|
auto f = basic_fp<uint128_t>();
|
||
|
bool is_predecessor_closer = binary32 ? f.assign(static_cast<float>(value))
|
||
|
: f.assign(converted_value);
|
||
|
if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer;
|
||
|
if (fixed) dragon_flags |= dragon::fixed;
|
||
|
// Limit precision to the maximum possible number of significant digits in
|
||
|
// an IEEE754 double because we don't need to generate zeros.
|
||
|
const int max_double_digits = 767;
|
||
|
if (precision > max_double_digits) precision = max_double_digits;
|
||
|
format_dragon(f, dragon_flags, precision, buf, exp);
|
||
|
}
|
||
|
if (!fixed && !specs.alt()) {
|
||
|
// Remove trailing zeros.
|
||
|
auto num_digits = buf.size();
|
||
|
while (num_digits > 0 && buf[num_digits - 1] == '0') {
|
||
|
--num_digits;
|
||
|
++exp;
|
||
|
}
|
||
|
buf.try_resize(num_digits);
|
||
|
}
|
||
|
return exp;
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename T>
|
||
|
FMT_CONSTEXPR20 auto write_float(OutputIt out, T value, format_specs specs,
|
||
|
locale_ref loc) -> OutputIt {
|
||
|
// Use signbit because value < 0 is false for NaN.
|
||
|
sign s = detail::signbit(value) ? sign::minus : specs.sign();
|
||
|
|
||
|
if (!detail::isfinite(value))
|
||
|
return write_nonfinite<Char>(out, detail::isnan(value), specs, s);
|
||
|
|
||
|
if (specs.align() == align::numeric && s != sign::none) {
|
||
|
*out++ = detail::getsign<Char>(s);
|
||
|
s = sign::none;
|
||
|
if (specs.width != 0) --specs.width;
|
||
|
}
|
||
|
|
||
|
int precision = specs.precision;
|
||
|
if (precision < 0) {
|
||
|
if (specs.type() != presentation_type::none) {
|
||
|
precision = 6;
|
||
|
} else if (is_fast_float<T>::value && !is_constant_evaluated()) {
|
||
|
// Use Dragonbox for the shortest format.
|
||
|
using floaty = conditional_t<sizeof(T) >= sizeof(double), double, float>;
|
||
|
auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
|
||
|
return write_float<Char>(out, dec, specs, s, loc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
memory_buffer buffer;
|
||
|
if (specs.type() == presentation_type::hexfloat) {
|
||
|
if (s != sign::none) buffer.push_back(detail::getsign<char>(s));
|
||
|
format_hexfloat(convert_float(value), specs, buffer);
|
||
|
return write_bytes<Char, align::right>(out, {buffer.data(), buffer.size()},
|
||
|
specs);
|
||
|
}
|
||
|
|
||
|
if (specs.type() == presentation_type::exp) {
|
||
|
if (precision == max_value<int>())
|
||
|
report_error("number is too big");
|
||
|
else
|
||
|
++precision;
|
||
|
if (specs.precision != 0) specs.set_alt();
|
||
|
} else if (specs.type() == presentation_type::fixed) {
|
||
|
if (specs.precision != 0) specs.set_alt();
|
||
|
} else if (precision == 0) {
|
||
|
precision = 1;
|
||
|
}
|
||
|
int exp = format_float(convert_float(value), precision, specs,
|
||
|
std::is_same<T, float>(), buffer);
|
||
|
|
||
|
specs.precision = precision;
|
||
|
auto f = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp};
|
||
|
return write_float<Char>(out, f, specs, s, loc);
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename T,
|
||
|
FMT_ENABLE_IF(is_floating_point<T>::value)>
|
||
|
FMT_CONSTEXPR20 auto write(OutputIt out, T value, format_specs specs,
|
||
|
locale_ref loc = {}) -> OutputIt {
|
||
|
return specs.localized() && write_loc(out, value, specs, loc)
|
||
|
? out
|
||
|
: write_float<Char>(out, value, specs, loc);
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename T,
|
||
|
FMT_ENABLE_IF(is_fast_float<T>::value)>
|
||
|
FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt {
|
||
|
if (is_constant_evaluated()) return write<Char>(out, value, format_specs());
|
||
|
|
||
|
auto s = detail::signbit(value) ? sign::minus : sign::none;
|
||
|
|
||
|
constexpr auto specs = format_specs();
|
||
|
using floaty = conditional_t<sizeof(T) >= sizeof(double), double, float>;
|
||
|
using floaty_uint = typename dragonbox::float_info<floaty>::carrier_uint;
|
||
|
floaty_uint mask = exponent_mask<floaty>();
|
||
|
if ((bit_cast<floaty_uint>(value) & mask) == mask)
|
||
|
return write_nonfinite<Char>(out, std::isnan(value), specs, s);
|
||
|
|
||
|
auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
|
||
|
return write_float<Char>(out, dec, specs, s, {});
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename T,
|
||
|
FMT_ENABLE_IF(is_floating_point<T>::value &&
|
||
|
!is_fast_float<T>::value)>
|
||
|
inline auto write(OutputIt out, T value) -> OutputIt {
|
||
|
return write<Char>(out, value, format_specs());
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt>
|
||
|
auto write(OutputIt out, monostate, format_specs = {}, locale_ref = {})
|
||
|
-> OutputIt {
|
||
|
FMT_ASSERT(false, "");
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt>
|
||
|
FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value)
|
||
|
-> OutputIt {
|
||
|
return copy_noinline<Char>(value.begin(), value.end(), out);
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename T,
|
||
|
FMT_ENABLE_IF(has_to_string_view<T>::value)>
|
||
|
constexpr auto write(OutputIt out, const T& value) -> OutputIt {
|
||
|
return write<Char>(out, to_string_view(value));
|
||
|
}
|
||
|
|
||
|
// FMT_ENABLE_IF() condition separated to workaround an MSVC bug.
|
||
|
template <
|
||
|
typename Char, typename OutputIt, typename T,
|
||
|
bool check = std::is_enum<T>::value && !std::is_same<T, Char>::value &&
|
||
|
mapped_type_constant<T, Char>::value != type::custom_type,
|
||
|
FMT_ENABLE_IF(check)>
|
||
|
FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
|
||
|
return write<Char>(out, static_cast<underlying_t<T>>(value));
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename T,
|
||
|
FMT_ENABLE_IF(std::is_same<T, bool>::value)>
|
||
|
FMT_CONSTEXPR auto write(OutputIt out, T value, const format_specs& specs = {},
|
||
|
locale_ref = {}) -> OutputIt {
|
||
|
return specs.type() != presentation_type::none &&
|
||
|
specs.type() != presentation_type::string
|
||
|
? write<Char>(out, value ? 1 : 0, specs, {})
|
||
|
: write_bytes<Char>(out, value ? "true" : "false", specs);
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt>
|
||
|
FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt {
|
||
|
auto it = reserve(out, 1);
|
||
|
*it++ = value;
|
||
|
return base_iterator(out, it);
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt>
|
||
|
FMT_CONSTEXPR20 auto write(OutputIt out, const Char* value) -> OutputIt {
|
||
|
if (value) return write(out, basic_string_view<Char>(value));
|
||
|
report_error("string pointer is null");
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename T,
|
||
|
FMT_ENABLE_IF(std::is_same<T, void>::value)>
|
||
|
auto write(OutputIt out, const T* value, const format_specs& specs = {},
|
||
|
locale_ref = {}) -> OutputIt {
|
||
|
return write_ptr<Char>(out, bit_cast<uintptr_t>(value), &specs);
|
||
|
}
|
||
|
|
||
|
template <typename Char, typename OutputIt, typename T,
|
||
|
FMT_ENABLE_IF(mapped_type_constant<T, Char>::value ==
|
||
|
type::custom_type &&
|
||
|
!std::is_fundamental<T>::value)>
|
||
|
FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> OutputIt {
|
||
|
auto f = formatter<T, Char>();
|
||
|
auto parse_ctx = parse_context<Char>({});
|
||
|
f.parse(parse_ctx);
|
||
|
auto ctx = basic_format_context<OutputIt, Char>(out, {}, {});
|
||
|
return f.format(value, ctx);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
using is_builtin =
|
||
|
bool_constant<std::is_same<T, int>::value || FMT_BUILTIN_TYPES>;
|
||
|
|
||
|
// An argument visitor that formats the argument and writes it via the output
|
||
|
// iterator. It's a class and not a generic lambda for compatibility with C++11.
|
||
|
template <typename Char> struct default_arg_formatter {
|
||
|
using context = buffered_context<Char>;
|
||
|
|
||
|
basic_appender<Char> out;
|
||
|
|
||
|
void operator()(monostate) { report_error("argument not found"); }
|
||
|
|
||
|
template <typename T, FMT_ENABLE_IF(is_builtin<T>::value)>
|
||
|
void operator()(T value) {
|
||
|
write<Char>(out, value);
|
||
|
}
|
||
|
|
||
|
template <typename T, FMT_ENABLE_IF(!is_builtin<T>::value)>
|
||
|
void operator()(T) {
|
||
|
FMT_ASSERT(false, "");
|
||
|
}
|
||
|
|
||
|
void operator()(typename basic_format_arg<context>::handle h) {
|
||
|
// Use a null locale since the default format must be unlocalized.
|
||
|
auto parse_ctx = parse_context<Char>({});
|
||
|
auto format_ctx = context(out, {}, {});
|
||
|
h.format(parse_ctx, format_ctx);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename Char> struct arg_formatter {
|
||
|
basic_appender<Char> out;
|
||
|
const format_specs& specs;
|
||
|
FMT_NO_UNIQUE_ADDRESS locale_ref locale;
|
||
|
|
||
|
template <typename T, FMT_ENABLE_IF(is_builtin<T>::value)>
|
||
|
FMT_CONSTEXPR FMT_INLINE void operator()(T value) {
|
||
|
detail::write<Char>(out, value, specs, locale);
|
||
|
}
|
||
|
|
||
|
template <typename T, FMT_ENABLE_IF(!is_builtin<T>::value)>
|
||
|
void operator()(T) {
|
||
|
FMT_ASSERT(false, "");
|
||
|
}
|
||
|
|
||
|
void operator()(typename basic_format_arg<buffered_context<Char>>::handle) {
|
||
|
// User-defined types are handled separately because they require access
|
||
|
// to the parse context.
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct dynamic_spec_getter {
|
||
|
template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
|
||
|
FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
|
||
|
return is_negative(value) ? ~0ull : static_cast<unsigned long long>(value);
|
||
|
}
|
||
|
|
||
|
template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
|
||
|
FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
|
||
|
report_error("width/precision is not integer");
|
||
|
return 0;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename Context, typename ID>
|
||
|
FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) -> basic_format_arg<Context> {
|
||
|
auto arg = ctx.arg(id);
|
||
|
if (!arg) report_error("argument not found");
|
||
|
return arg;
|
||
|
}
|
||
|
|
||
|
template <typename Context>
|
||
|
FMT_CONSTEXPR int get_dynamic_spec(
|
||
|
arg_id_kind kind, const arg_ref<typename Context::char_type>& ref,
|
||
|
Context& ctx) {
|
||
|
FMT_ASSERT(kind != arg_id_kind::none, "");
|
||
|
auto arg =
|
||
|
kind == arg_id_kind::index ? ctx.arg(ref.index) : ctx.arg(ref.name);
|
||
|
if (!arg) report_error("argument not found");
|
||
|
unsigned long long value = arg.visit(dynamic_spec_getter());
|
||
|
if (value > to_unsigned(max_value<int>()))
|
||
|
report_error("width/precision is out of range");
|
||
|
return static_cast<int>(value);
|
||
|
}
|
||
|
|
||
|
template <typename Context>
|
||
|
FMT_CONSTEXPR void handle_dynamic_spec(
|
||
|
arg_id_kind kind, int& value,
|
||
|
const arg_ref<typename Context::char_type>& ref, Context& ctx) {
|
||
|
if (kind != arg_id_kind::none) value = get_dynamic_spec(kind, ref, ctx);
|
||
|
}
|
||
|
|
||
|
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
|
||
|
template <typename T, typename Char, size_t N,
|
||
|
fmt::detail::fixed_string<Char, N> Str>
|
||
|
struct static_named_arg : view {
|
||
|
static constexpr auto name = Str.data;
|
||
|
|
||
|
const T& value;
|
||
|
static_named_arg(const T& v) : value(v) {}
|
||
|
};
|
||
|
|
||
|
template <typename T, typename Char, size_t N,
|
||
|
fmt::detail::fixed_string<Char, N> Str>
|
||
|
struct is_named_arg<static_named_arg<T, Char, N, Str>> : std::true_type {};
|
||
|
|
||
|
template <typename T, typename Char, size_t N,
|
||
|
fmt::detail::fixed_string<Char, N> Str>
|
||
|
struct is_static_named_arg<static_named_arg<T, Char, N, Str>> : std::true_type {
|
||
|
};
|
||
|
|
||
|
template <typename Char, size_t N, fmt::detail::fixed_string<Char, N> Str>
|
||
|
struct udl_arg {
|
||
|
template <typename T> auto operator=(T&& value) const {
|
||
|
return static_named_arg<T, Char, N, Str>(std::forward<T>(value));
|
||
|
}
|
||
|
};
|
||
|
#else
|
||
|
template <typename Char> struct udl_arg {
|
||
|
const Char* str;
|
||
|
|
||
|
template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> {
|
||
|
return {str, std::forward<T>(value)};
|
||
|
}
|
||
|
};
|
||
|
#endif // FMT_USE_NONTYPE_TEMPLATE_ARGS
|
||
|
|
||
|
template <typename Char> struct format_handler {
|
||
|
parse_context<Char> parse_ctx;
|
||
|
buffered_context<Char> ctx;
|
||
|
|
||
|
void on_text(const Char* begin, const Char* end) {
|
||
|
copy_noinline<Char>(begin, end, ctx.out());
|
||
|
}
|
||
|
|
||
|
FMT_CONSTEXPR auto on_arg_id() -> int { return parse_ctx.next_arg_id(); }
|
||
|
FMT_CONSTEXPR auto on_arg_id(int id) -> int {
|
||
|
parse_ctx.check_arg_id(id);
|
||
|
return id;
|
||
|
}
|
||
|
FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
|
||
|
parse_ctx.check_arg_id(id);
|
||
|
int arg_id = ctx.arg_id(id);
|
||
|
if (arg_id < 0) report_error("argument not found");
|
||
|
return arg_id;
|
||
|
}
|
||
|
|
||
|
FMT_INLINE void on_replacement_field(int id, const Char*) {
|
||
|
ctx.arg(id).visit(default_arg_formatter<Char>{ctx.out()});
|
||
|
}
|
||
|
|
||
|
auto on_format_specs(int id, const Char* begin, const Char* end)
|
||
|
-> const Char* {
|
||
|
auto arg = get_arg(ctx, id);
|
||
|
// Not using a visitor for custom types gives better codegen.
|
||
|
if (arg.format_custom(begin, parse_ctx, ctx)) return parse_ctx.begin();
|
||
|
|
||
|
auto specs = dynamic_format_specs<Char>();
|
||
|
begin = parse_format_specs(begin, end, specs, parse_ctx, arg.type());
|
||
|
if (specs.dynamic()) {
|
||
|
handle_dynamic_spec(specs.dynamic_width(), specs.width, specs.width_ref,
|
||
|
ctx);
|
||
|
handle_dynamic_spec(specs.dynamic_precision(), specs.precision,
|
||
|
specs.precision_ref, ctx);
|
||
|
}
|
||
|
|
||
|
arg.visit(arg_formatter<Char>{ctx.out(), specs, ctx.locale()});
|
||
|
return begin;
|
||
|
}
|
||
|
|
||
|
FMT_NORETURN void on_error(const char* message) { report_error(message); }
|
||
|
};
|
||
|
|
||
|
using format_func = void (*)(detail::buffer<char>&, int, const char*);
|
||
|
FMT_API void do_report_error(format_func func, int error_code,
|
||
|
const char* message) noexcept;
|
||
|
|
||
|
FMT_API void format_error_code(buffer<char>& out, int error_code,
|
||
|
string_view message) noexcept;
|
||
|
|
||
|
template <typename T, typename Char, type TYPE>
|
||
|
template <typename FormatContext>
|
||
|
FMT_CONSTEXPR auto native_formatter<T, Char, TYPE>::format(
|
||
|
const T& val, FormatContext& ctx) const -> decltype(ctx.out()) {
|
||
|
if (!specs_.dynamic())
|
||
|
return write<Char>(ctx.out(), val, specs_, ctx.locale());
|
||
|
auto specs = format_specs(specs_);
|
||
|
handle_dynamic_spec(specs.dynamic_width(), specs.width, specs_.width_ref,
|
||
|
ctx);
|
||
|
handle_dynamic_spec(specs.dynamic_precision(), specs.precision,
|
||
|
specs_.precision_ref, ctx);
|
||
|
return write<Char>(ctx.out(), val, specs, ctx.locale());
|
||
|
}
|
||
|
|
||
|
// DEPRECATED!
|
||
|
template <typename Char = char> struct vformat_args {
|
||
|
using type = basic_format_args<buffered_context<Char>>;
|
||
|
};
|
||
|
template <> struct vformat_args<char> {
|
||
|
using type = format_args;
|
||
|
};
|
||
|
|
||
|
template <typename Char>
|
||
|
void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
|
||
|
typename vformat_args<Char>::type args, locale_ref loc = {}) {
|
||
|
auto out = basic_appender<Char>(buf);
|
||
|
parse_format_string(
|
||
|
fmt, format_handler<Char>{parse_context<Char>(fmt), {out, args, loc}});
|
||
|
}
|
||
|
} // namespace detail
|
||
|
|
||
|
FMT_BEGIN_EXPORT
|
||
|
|
||
|
// A generic formatting context with custom output iterator and character
|
||
|
// (code unit) support. Char is the format string code unit type which can be
|
||
|
// different from OutputIt::value_type.
|
||
|
template <typename OutputIt, typename Char> class generic_context {
|
||
|
private:
|
||
|
OutputIt out_;
|
||
|
basic_format_args<generic_context> args_;
|
||
|
detail::locale_ref loc_;
|
||
|
|
||
|
public:
|
||
|
using char_type = Char;
|
||
|
using iterator = OutputIt;
|
||
|
using parse_context_type FMT_DEPRECATED = parse_context<Char>;
|
||
|
template <typename T>
|
||
|
using formatter_type FMT_DEPRECATED = formatter<T, Char>;
|
||
|
enum { builtin_types = FMT_BUILTIN_TYPES };
|
||
|
|
||
|
constexpr generic_context(OutputIt out,
|
||
|
basic_format_args<generic_context> args,
|
||
|
detail::locale_ref loc = {})
|
||
|
: out_(out), args_(args), loc_(loc) {}
|
||
|
generic_context(generic_context&&) = default;
|
||
|
generic_context(const generic_context&) = delete;
|
||
|
void operator=(const generic_context&) = delete;
|
||
|
|
||
|
constexpr auto arg(int id) const -> basic_format_arg<generic_context> {
|
||
|
return args_.get(id);
|
||
|
}
|
||
|
auto arg(basic_string_view<Char> name) const
|
||
|
-> basic_format_arg<generic_context> {
|
||
|
return args_.get(name);
|
||
|
}
|
||
|
constexpr auto arg_id(basic_string_view<Char> name) const -> int {
|
||
|
return args_.get_id(name);
|
||
|
}
|
||
|
|
||
|
constexpr auto out() const -> iterator { return out_; }
|
||
|
|
||
|
void advance_to(iterator it) {
|
||
|
if (!detail::is_back_insert_iterator<iterator>()) out_ = it;
|
||
|
}
|
||
|
|
||
|
constexpr auto locale() const -> detail::locale_ref { return loc_; }
|
||
|
};
|
||
|
|
||
|
class loc_value {
|
||
|
private:
|
||
|
basic_format_arg<context> value_;
|
||
|
|
||
|
public:
|
||
|
template <typename T, FMT_ENABLE_IF(!detail::is_float128<T>::value)>
|
||
|
loc_value(T value) : value_(value) {}
|
||
|
|
||
|
template <typename T, FMT_ENABLE_IF(detail::is_float128<T>::value)>
|
||
|
loc_value(T) {}
|
||
|
|
||
|
template <typename Visitor> auto visit(Visitor&& vis) -> decltype(vis(0)) {
|
||
|
return value_.visit(vis);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// A locale facet that formats values in UTF-8.
|
||
|
// It is parameterized on the locale to avoid the heavy <locale> include.
|
||
|
template <typename Locale> class format_facet : public Locale::facet {
|
||
|
private:
|
||
|
std::string separator_;
|
||
|
std::string grouping_;
|
||
|
std::string decimal_point_;
|
||
|
|
||
|
protected:
|
||
|
virtual auto do_put(appender out, loc_value val,
|
||
|
const format_specs& specs) const -> bool;
|
||
|
|
||
|
public:
|
||
|
static FMT_API typename Locale::id id;
|
||
|
|
||
|
explicit format_facet(Locale& loc);
|
||
|
explicit format_facet(string_view sep = "", std::string grouping = "\3",
|
||
|
std::string decimal_point = ".")
|
||
|
: separator_(sep.data(), sep.size()),
|
||
|
grouping_(grouping),
|
||
|
decimal_point_(decimal_point) {}
|
||
|
|
||
|
auto put(appender out, loc_value val, const format_specs& specs) const
|
||
|
-> bool {
|
||
|
return do_put(out, val, specs);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
#define FMT_FORMAT_AS(Type, Base) \
|
||
|
template <typename Char> \
|
||
|
struct formatter<Type, Char> : formatter<Base, Char> { \
|
||
|
template <typename FormatContext> \
|
||
|
FMT_CONSTEXPR auto format(Type value, FormatContext& ctx) const \
|
||
|
-> decltype(ctx.out()) { \
|
||
|
return formatter<Base, Char>::format(value, ctx); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
FMT_FORMAT_AS(signed char, int);
|
||
|
FMT_FORMAT_AS(unsigned char, unsigned);
|
||
|
FMT_FORMAT_AS(short, int);
|
||
|
FMT_FORMAT_AS(unsigned short, unsigned);
|
||
|
FMT_FORMAT_AS(long, detail::long_type);
|
||
|
FMT_FORMAT_AS(unsigned long, detail::ulong_type);
|
||
|
FMT_FORMAT_AS(Char*, const Char*);
|
||
|
FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);
|
||
|
FMT_FORMAT_AS(std::nullptr_t, const void*);
|
||
|
FMT_FORMAT_AS(void*, const void*);
|
||
|
|
||
|
template <typename Char, size_t N>
|
||
|
struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {};
|
||
|
|
||
|
template <typename Char, typename Traits, typename Allocator>
|
||
|
class formatter<std::basic_string<Char, Traits, Allocator>, Char>
|
||
|
: public formatter<basic_string_view<Char>, Char> {};
|
||
|
|
||
|
template <int N, typename Char>
|
||
|
struct formatter<detail::bitint<N>, Char> : formatter<long long, Char> {};
|
||
|
template <int N, typename Char>
|
||
|
struct formatter<detail::ubitint<N>, Char>
|
||
|
: formatter<unsigned long long, Char> {};
|
||
|
|
||
|
template <typename Char>
|
||
|
struct formatter<detail::float128, Char>
|
||
|
: detail::native_formatter<detail::float128, Char,
|
||
|
detail::type::float_type> {};
|
||
|
|
||
|
template <typename T, typename Char>
|
||
|
struct formatter<T, Char, void_t<detail::format_as_result<T>>>
|
||
|
: formatter<detail::format_as_result<T>, Char> {
|
||
|
template <typename FormatContext>
|
||
|
FMT_CONSTEXPR auto format(const T& value, FormatContext& ctx) const
|
||
|
-> decltype(ctx.out()) {
|
||
|
auto&& val = format_as(value); // Make an lvalue reference for format.
|
||
|
return formatter<detail::format_as_result<T>, Char>::format(val, ctx);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Converts `p` to `const void*` for pointer formatting.
|
||
|
*
|
||
|
* **Example**:
|
||
|
*
|
||
|
* auto s = fmt::format("{}", fmt::ptr(p));
|
||
|
*/
|
||
|
template <typename T> auto ptr(T p) -> const void* {
|
||
|
static_assert(std::is_pointer<T>::value, "");
|
||
|
return detail::bit_cast<const void*>(p);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Converts `e` to the underlying type.
|
||
|
*
|
||
|
* **Example**:
|
||
|
*
|
||
|
* enum class color { red, green, blue };
|
||
|
* auto s = fmt::format("{}", fmt::underlying(color::red)); // s == "0"
|
||
|
*/
|
||
|
template <typename Enum>
|
||
|
constexpr auto underlying(Enum e) noexcept -> underlying_t<Enum> {
|
||
|
return static_cast<underlying_t<Enum>>(e);
|
||
|
}
|
||
|
|
||
|
namespace enums {
|
||
|
template <typename Enum, FMT_ENABLE_IF(std::is_enum<Enum>::value)>
|
||
|
constexpr auto format_as(Enum e) noexcept -> underlying_t<Enum> {
|
||
|
return static_cast<underlying_t<Enum>>(e);
|
||
|
}
|
||
|
} // namespace enums
|
||
|
|
||
|
#ifdef __cpp_lib_byte
|
||
|
template <> struct formatter<std::byte> : formatter<unsigned> {
|
||
|
static auto format_as(std::byte b) -> unsigned char {
|
||
|
return static_cast<unsigned char>(b);
|
||
|
}
|
||
|
template <typename Context>
|
||
|
auto format(std::byte b, Context& ctx) const -> decltype(ctx.out()) {
|
||
|
return formatter<unsigned>::format(format_as(b), ctx);
|
||
|
}
|
||
|
};
|
||
|
#endif
|
||
|
|
||
|
struct bytes {
|
||
|
string_view data;
|
||
|
|
||
|
inline explicit bytes(string_view s) : data(s) {}
|
||
|
};
|
||
|
|
||
|
template <> struct formatter<bytes> {
|
||
|
private:
|
||
|
detail::dynamic_format_specs<> specs_;
|
||
|
|
||
|
public:
|
||
|
FMT_CONSTEXPR auto parse(parse_context<>& ctx) -> const char* {
|
||
|
return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
|
||
|
detail::type::string_type);
|
||
|
}
|
||
|
|
||
|
template <typename FormatContext>
|
||
|
auto format(bytes b, FormatContext& ctx) const -> decltype(ctx.out()) {
|
||
|
auto specs = specs_;
|
||
|
detail::handle_dynamic_spec(specs.dynamic_width(), specs.width,
|
||
|
specs.width_ref, ctx);
|
||
|
detail::handle_dynamic_spec(specs.dynamic_precision(), specs.precision,
|
||
|
specs.precision_ref, ctx);
|
||
|
return detail::write_bytes<char>(ctx.out(), b.data, specs);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// group_digits_view is not derived from view because it copies the argument.
|
||
|
template <typename T> struct group_digits_view {
|
||
|
T value;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Returns a view that formats an integer value using ',' as a
|
||
|
* locale-independent thousands separator.
|
||
|
*
|
||
|
* **Example**:
|
||
|
*
|
||
|
* fmt::print("{}", fmt::group_digits(12345));
|
||
|
* // Output: "12,345"
|
||
|
*/
|
||
|
template <typename T> auto group_digits(T value) -> group_digits_view<T> {
|
||
|
return {value};
|
||
|
}
|
||
|
|
||
|
template <typename T> struct formatter<group_digits_view<T>> : formatter<T> {
|
||
|
private:
|
||
|
detail::dynamic_format_specs<> specs_;
|
||
|
|
||
|
public:
|
||
|
FMT_CONSTEXPR auto parse(parse_context<>& ctx) -> const char* {
|
||
|
return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
|
||
|
detail::type::int_type);
|
||
|
}
|
||
|
|
||
|
template <typename FormatContext>
|
||
|
auto format(group_digits_view<T> view, FormatContext& ctx) const
|
||
|
-> decltype(ctx.out()) {
|
||
|
auto specs = specs_;
|
||
|
detail::handle_dynamic_spec(specs.dynamic_width(), specs.width,
|
||
|
specs.width_ref, ctx);
|
||
|
detail::handle_dynamic_spec(specs.dynamic_precision(), specs.precision,
|
||
|
specs.precision_ref, ctx);
|
||
|
auto arg = detail::make_write_int_arg(view.value, specs.sign());
|
||
|
return detail::write_int(
|
||
|
ctx.out(), static_cast<detail::uint64_or_128_t<T>>(arg.abs_value),
|
||
|
arg.prefix, specs, detail::digit_grouping<char>("\3", ","));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T, typename Char> struct nested_view {
|
||
|
const formatter<T, Char>* fmt;
|
||
|
const T* value;
|
||
|
};
|
||
|
|
||
|
template <typename T, typename Char>
|
||
|
struct formatter<nested_view<T, Char>, Char> {
|
||
|
FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* {
|
||
|
return ctx.begin();
|
||
|
}
|
||
|
template <typename FormatContext>
|
||
|
auto format(nested_view<T, Char> view, FormatContext& ctx) const
|
||
|
-> decltype(ctx.out()) {
|
||
|
return view.fmt->format(*view.value, ctx);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T, typename Char = char> struct nested_formatter {
|
||
|
private:
|
||
|
basic_specs specs_;
|
||
|
int width_;
|
||
|
formatter<T, Char> formatter_;
|
||
|
|
||
|
public:
|
||
|
constexpr nested_formatter() : width_(0) {}
|
||
|
|
||
|
FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* {
|
||
|
auto it = ctx.begin(), end = ctx.end();
|
||
|
if (it == end) return it;
|
||
|
auto specs = format_specs();
|
||
|
it = detail::parse_align(it, end, specs);
|
||
|
specs_ = specs;
|
||
|
Char c = *it;
|
||
|
auto width_ref = detail::arg_ref<Char>();
|
||
|
if ((c >= '0' && c <= '9') || c == '{') {
|
||
|
it = detail::parse_width(it, end, specs, width_ref, ctx);
|
||
|
width_ = specs.width;
|
||
|
}
|
||
|
ctx.advance_to(it);
|
||
|
return formatter_.parse(ctx);
|
||
|
}
|
||
|
|
||
|
template <typename FormatContext, typename F>
|
||
|
auto write_padded(FormatContext& ctx, F write) const -> decltype(ctx.out()) {
|
||
|
if (width_ == 0) return write(ctx.out());
|
||
|
auto buf = basic_memory_buffer<Char>();
|
||
|
write(basic_appender<Char>(buf));
|
||
|
auto specs = format_specs();
|
||
|
specs.width = width_;
|
||
|
specs.set_fill(
|
||
|
basic_string_view<Char>(specs_.fill<Char>(), specs_.fill_size()));
|
||
|
specs.set_align(specs_.align());
|
||
|
return detail::write<Char>(
|
||
|
ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs);
|
||
|
}
|
||
|
|
||
|
auto nested(const T& value) const -> nested_view<T, Char> {
|
||
|
return nested_view<T, Char>{&formatter_, &value};
|
||
|
}
|
||
|
};
|
||
|
|
||
|
inline namespace literals {
|
||
|
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
|
||
|
template <detail::fixed_string S> constexpr auto operator""_a() {
|
||
|
using char_t = remove_cvref_t<decltype(*S.data)>;
|
||
|
return detail::udl_arg<char_t, sizeof(S.data) / sizeof(char_t), S>();
|
||
|
}
|
||
|
#else
|
||
|
/**
|
||
|
* User-defined literal equivalent of `fmt::arg`.
|
||
|
*
|
||
|
* **Example**:
|
||
|
*
|
||
|
* using namespace fmt::literals;
|
||
|
* fmt::print("The answer is {answer}.", "answer"_a=42);
|
||
|
*/
|
||
|
constexpr auto operator""_a(const char* s, size_t) -> detail::udl_arg<char> {
|
||
|
return {s};
|
||
|
}
|
||
|
#endif // FMT_USE_NONTYPE_TEMPLATE_ARGS
|
||
|
} // namespace literals
|
||
|
|
||
|
/// A fast integer formatter.
|
||
|
class format_int {
|
||
|
private:
|
||
|
// Buffer should be large enough to hold all digits (digits10 + 1),
|
||
|
// a sign and a null character.
|
||
|
enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 };
|
||
|
mutable char buffer_[buffer_size];
|
||
|
char* str_;
|
||
|
|
||
|
template <typename UInt>
|
||
|
FMT_CONSTEXPR20 auto format_unsigned(UInt value) -> char* {
|
||
|
auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value);
|
||
|
return detail::do_format_decimal(buffer_, n, buffer_size - 1);
|
||
|
}
|
||
|
|
||
|
template <typename Int>
|
||
|
FMT_CONSTEXPR20 auto format_signed(Int value) -> char* {
|
||
|
auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value);
|
||
|
bool negative = value < 0;
|
||
|
if (negative) abs_value = 0 - abs_value;
|
||
|
auto begin = format_unsigned(abs_value);
|
||
|
if (negative) *--begin = '-';
|
||
|
return begin;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
FMT_CONSTEXPR20 explicit format_int(int value) : str_(format_signed(value)) {}
|
||
|
FMT_CONSTEXPR20 explicit format_int(long value)
|
||
|
: str_(format_signed(value)) {}
|
||
|
FMT_CONSTEXPR20 explicit format_int(long long value)
|
||
|
: str_(format_signed(value)) {}
|
||
|
FMT_CONSTEXPR20 explicit format_int(unsigned value)
|
||
|
: str_(format_unsigned(value)) {}
|
||
|
FMT_CONSTEXPR20 explicit format_int(unsigned long value)
|
||
|
: str_(format_unsigned(value)) {}
|
||
|
FMT_CONSTEXPR20 explicit format_int(unsigned long long value)
|
||
|
: str_(format_unsigned(value)) {}
|
||
|
|
||
|
/// Returns the number of characters written to the output buffer.
|
||
|
FMT_CONSTEXPR20 auto size() const -> size_t {
|
||
|
return detail::to_unsigned(buffer_ - str_ + buffer_size - 1);
|
||
|
}
|
||
|
|
||
|
/// Returns a pointer to the output buffer content. No terminating null
|
||
|
/// character is appended.
|
||
|
FMT_CONSTEXPR20 auto data() const -> const char* { return str_; }
|
||
|
|
||
|
/// Returns a pointer to the output buffer content with terminating null
|
||
|
/// character appended.
|
||
|
FMT_CONSTEXPR20 auto c_str() const -> const char* {
|
||
|
buffer_[buffer_size - 1] = '\0';
|
||
|
return str_;
|
||
|
}
|
||
|
|
||
|
/// Returns the content of the output buffer as an `std::string`.
|
||
|
inline auto str() const -> std::string { return {str_, size()}; }
|
||
|
};
|
||
|
|
||
|
#define FMT_STRING_IMPL(s, base) \
|
||
|
[] { \
|
||
|
/* Use the hidden visibility as a workaround for a GCC bug (#1973). */ \
|
||
|
/* Use a macro-like name to avoid shadowing warnings. */ \
|
||
|
struct FMT_VISIBILITY("hidden") FMT_COMPILE_STRING : base { \
|
||
|
using char_type = fmt::remove_cvref_t<decltype(s[0])>; \
|
||
|
constexpr explicit operator fmt::basic_string_view<char_type>() const { \
|
||
|
return fmt::detail::compile_string_to_view<char_type>(s); \
|
||
|
} \
|
||
|
}; \
|
||
|
using FMT_STRING_VIEW = \
|
||
|
fmt::basic_string_view<typename FMT_COMPILE_STRING::char_type>; \
|
||
|
fmt::detail::ignore_unused(FMT_STRING_VIEW(FMT_COMPILE_STRING())); \
|
||
|
return FMT_COMPILE_STRING(); \
|
||
|
}()
|
||
|
|
||
|
/**
|
||
|
* Constructs a legacy compile-time format string from a string literal `s`.
|
||
|
*
|
||
|
* **Example**:
|
||
|
*
|
||
|
* // A compile-time error because 'd' is an invalid specifier for strings.
|
||
|
* std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
|
||
|
*/
|
||
|
#define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::detail::compile_string)
|
||
|
|
||
|
FMT_API auto vsystem_error(int error_code, string_view fmt, format_args args)
|
||
|
-> std::system_error;
|
||
|
|
||
|
/**
|
||
|
* Constructs `std::system_error` with a message formatted with
|
||
|
* `fmt::format(fmt, args...)`.
|
||
|
* `error_code` is a system error code as given by `errno`.
|
||
|
*
|
||
|
* **Example**:
|
||
|
*
|
||
|
* // This throws std::system_error with the description
|
||
|
* // cannot open file 'madeup': No such file or directory
|
||
|
* // or similar (system message may vary).
|
||
|
* const char* filename = "madeup";
|
||
|
* FILE* file = fopen(filename, "r");
|
||
|
* if (!file)
|
||
|
* throw fmt::system_error(errno, "cannot open file '{}'", filename);
|
||
|
*/
|
||
|
template <typename... T>
|
||
|
auto system_error(int error_code, format_string<T...> fmt, T&&... args)
|
||
|
-> std::system_error {
|
||
|
return vsystem_error(error_code, fmt.str, vargs<T...>{{args...}});
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Formats an error message for an error returned by an operating system or a
|
||
|
* language runtime, for example a file opening error, and writes it to `out`.
|
||
|
* The format is the same as the one used by `std::system_error(ec, message)`
|
||
|
* where `ec` is `std::error_code(error_code, std::generic_category())`.
|
||
|
* It is implementation-defined but normally looks like:
|
||
|
*
|
||
|
* <message>: <system-message>
|
||
|
*
|
||
|
* where `<message>` is the passed message and `<system-message>` is the system
|
||
|
* message corresponding to the error code.
|
||
|
* `error_code` is a system error code as given by `errno`.
|
||
|
*/
|
||
|
FMT_API void format_system_error(detail::buffer<char>& out, int error_code,
|
||
|
const char* message) noexcept;
|
||
|
|
||
|
// Reports a system error without throwing an exception.
|
||
|
// Can be used to report errors from destructors.
|
||
|
FMT_API void report_system_error(int error_code, const char* message) noexcept;
|
||
|
|
||
|
inline auto vformat(detail::locale_ref loc, string_view fmt, format_args args)
|
||
|
-> std::string {
|
||
|
auto buf = memory_buffer();
|
||
|
detail::vformat_to(buf, fmt, args, loc);
|
||
|
return {buf.data(), buf.size()};
|
||
|
}
|
||
|
|
||
|
template <typename... T>
|
||
|
FMT_INLINE auto format(detail::locale_ref loc, format_string<T...> fmt,
|
||
|
T&&... args) -> std::string {
|
||
|
return vformat(loc, fmt.str, vargs<T...>{{args...}});
|
||
|
}
|
||
|
|
||
|
template <typename OutputIt,
|
||
|
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
|
||
|
auto vformat_to(OutputIt out, detail::locale_ref loc, string_view fmt,
|
||
|
format_args args) -> OutputIt {
|
||
|
auto&& buf = detail::get_buffer<char>(out);
|
||
|
detail::vformat_to(buf, fmt, args, loc);
|
||
|
return detail::get_iterator(buf, out);
|
||
|
}
|
||
|
|
||
|
template <typename OutputIt, typename... T,
|
||
|
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
|
||
|
FMT_INLINE auto format_to(OutputIt out, detail::locale_ref loc,
|
||
|
format_string<T...> fmt, T&&... args) -> OutputIt {
|
||
|
return fmt::vformat_to(out, loc, fmt.str, vargs<T...>{{args...}});
|
||
|
}
|
||
|
|
||
|
template <typename... T>
|
||
|
FMT_NODISCARD FMT_INLINE auto formatted_size(detail::locale_ref loc,
|
||
|
format_string<T...> fmt,
|
||
|
T&&... args) -> size_t {
|
||
|
auto buf = detail::counting_buffer<>();
|
||
|
detail::vformat_to(buf, fmt.str, vargs<T...>{{args...}}, loc);
|
||
|
return buf.count();
|
||
|
}
|
||
|
|
||
|
FMT_API auto vformat(string_view fmt, format_args args) -> std::string;
|
||
|
|
||
|
/**
|
||
|
* Formats `args` according to specifications in `fmt` and returns the result
|
||
|
* as a string.
|
||
|
*
|
||
|
* **Example**:
|
||
|
*
|
||
|
* #include <fmt/format.h>
|
||
|
* std::string message = fmt::format("The answer is {}.", 42);
|
||
|
*/
|
||
|
template <typename... T>
|
||
|
FMT_NODISCARD FMT_INLINE auto format(format_string<T...> fmt, T&&... args)
|
||
|
-> std::string {
|
||
|
return vformat(fmt.str, vargs<T...>{{args...}});
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Converts `value` to `std::string` using the default format for type `T`.
|
||
|
*
|
||
|
* **Example**:
|
||
|
*
|
||
|
* std::string answer = fmt::to_string(42);
|
||
|
*/
|
||
|
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
|
||
|
FMT_NODISCARD auto to_string(T value) -> std::string {
|
||
|
// The buffer should be large enough to store the number including the sign
|
||
|
// or "false" for bool.
|
||
|
char buffer[max_of(detail::digits10<T>() + 2, 5)];
|
||
|
return {buffer, detail::write<char>(buffer, value)};
|
||
|
}
|
||
|
|
||
|
template <typename T, FMT_ENABLE_IF(detail::use_format_as<T>::value)>
|
||
|
FMT_NODISCARD auto to_string(const T& value) -> std::string {
|
||
|
return to_string(format_as(value));
|
||
|
}
|
||
|
|
||
|
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value &&
|
||
|
!detail::use_format_as<T>::value)>
|
||
|
FMT_NODISCARD auto to_string(const T& value) -> std::string {
|
||
|
auto buffer = memory_buffer();
|
||
|
detail::write<char>(appender(buffer), value);
|
||
|
return {buffer.data(), buffer.size()};
|
||
|
}
|
||
|
|
||
|
FMT_END_EXPORT
|
||
|
FMT_END_NAMESPACE
|
||
|
|
||
|
#ifdef FMT_HEADER_ONLY
|
||
|
# define FMT_FUNC inline
|
||
|
# include "format-inl.h"
|
||
|
#endif
|
||
|
|
||
|
// Restore _LIBCPP_REMOVE_TRANSITIVE_INCLUDES.
|
||
|
#ifdef FMT_REMOVE_TRANSITIVE_INCLUDES
|
||
|
# undef _LIBCPP_REMOVE_TRANSITIVE_INCLUDES
|
||
|
#endif
|
||
|
|
||
|
#endif // FMT_FORMAT_H_
|